Herrmann, J.; Inden, G.; Sauthoff, G.: Deformation behaviour of iron-rich iron-aluminium alloys with ternary transition metal additions. Steel Research International 75, 5, pp. 339 - 342 (2004)
Herrmann, J.; Inden, G.; Sauthoff, G.: Microstructure and deformation behaviour of iron-rich iron-aluminium alloys with ternary carbon and silicon additions. Steel Research International 75, 5, pp. 343 - 352 (2004)
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...