Berezkin, A. V.; Kudryavtsev, Y. V.: Effect of Cross-Linking on the Structure and Growth of Polymer Films Prepared by Interfacial Polymerization. Langmuir 31 (44), pp. 12279 - 12290 (2015)
Berezkin, A. V.; Kudryavtsev, Y. V.: Linear interfacial polymerization: Theory and simulations with dissipative particle dynamics. The Journal of Chemical Physics 141 (19), 194906 (2014)
Berezkin, A. V.; Kudryavtsev, Y. V.: Hybrid approach combining dissipative particle dynamics and finite-difference diffusion model: Simulation of reactive polymer coupling and interfacial polymerization. The Journal of Chemical Physics 139 (15), 154102 (2013)
Berezkin, A. V.; Kudryavtsev, Y. V.: End-coupling reactions in incompatible polymer blends: From droplets to complex micelles through interfacial instability. Macromolecules 46 (12), pp. 5080 - 5089 (2013)
Auer, A. A.; Richter, A.; Berezkin, A. V.; Guseva, D. V.; Spange, S.: Theoretical study of twin polymerization – From chemical reactivity to structure formation. Macromolecular Theory Simulations 21 (9), pp. 615 - 628 (2012)
Berezkin, A. V.; Biedermann, P. U.: Multiscale simulation of polyurethane network. World Polymer Congress 2012, Blacksburg, Virginia Tech, USA, June 24, 2012 - June 29, 2012. (2012)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain, June 26, 2011 - July 01, 2011. (2011)
Berezkin, A. V.; Biedermann, P. U.; Auer, A. A.: Mesoscale simulation of network formation and structure, combining molecular dynamics and kinetic Monte Carlo approaches. European Polymer Congress 2011, Granada, Spain (2011)
Berezkin, A. V.; Biedermann, P. U.: Simulation of polyurethane and water interac-tions with the ZnO surface: DFT and classical OPLS-AA force field calculation. 4-th World Congress on Adhesion and Related Phenomena, Arcachon, France 2010 (2010)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Start of a collaborative research project on the sustainable production of manganese and its alloys being funded by European Union with 7 million euros