Schneider, P.; Sigel, R.; Lange, M. M.; Beier, F.; Renner, F. U.; Erbe, A.: Activation and fluoride-assisted phosphating of aluminium silicon coated steel. ACS Applied Materials and Interfaces 5 (10), pp. 4224 - 4232 (2013)
Kawano, T.; Renner, F. U.: Studies on Wetting Behaviour of Hot-dip Galvanizing Process by use of Model Specimens with Tailored Surface Oxides. Surf. Int. Anal. 44 (8), pp. 1009 - 1012 (2012)
Kawano, T.; Renner, F. U.: Tailoring Model Surface and Wetting Experiment for a Fundamental Understanding of Hot-dip Galvanizing. ISIJ International 51, 10, pp. 1703 - 1709 (2011)
Valtiner, M.; Ankah, G. N.; Bashir, A.; Renner, F. U.: Atomic force microscope imaging and force measurements at electrified and actively corroding interfaces: Challenges and novel cell design. Review of Scientific Instruments 82 (2), pp. 023703-1 - 023703-8 (2011)
Naraparaju, R.; Christ, H.-J.; Renner, F. U.; Kostka, A.: Effect of shot-peening on the oxidation behaviour of boiler steels. Oxidation of Metals 76 (3-4), pp. 233 - 245 (2011)
Borissov, D.; Pareek, A.; Renner, F. U.; Rohwerder, M.: Electrodeposition of Zn and Au–Zn alloys at low temperature in an ionic liquid. Physical Chemistry Chemical Physics 12 (9), pp. 2059 - 2062 (2010)
Gründer, Y.; Renner, F. U.; Lee,, T. L.: The electrodeposition of copper onto UHV-prepared GaAs(001) surfaces. Surface Science 603 (17), pp. L105 - L108 (2009)
Naraparaju, R.; Christ, H.-J.; Renner, F. U.; Kostka, A.: Dislocation Engineering and its effect on the oxidation behaviour. Materials at High Temperatures 29, pp. 116 - 122 (2012)
Duarte, M. J.; Brinckmann, S.; Renner, F. U.; Dehm, G.: Nanomechanical testing under environmental conditins of Fe-based metallic glasses. 22st International Symposium on Metastable Amorphous and Nanostructured Materials, ISMANAM 2015, Paris, France (2015)
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.