Song, J.; Kostka, A.; Veehmayer, M.; Raabe, D.: Hierarchical microstructure of explosive joints: Example of titanium to steel cladding. Materials Science and Engineering A 528, pp. 2641 - 2647 (2011)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Structural characterization and analysis of interface formed by explosion cladding of titanium to low carbon steel. 19th International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM), Moscow, Russia (2012)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Microstructure and properties of interfaces formed by explosion cladding of Ti-Steel. XXI Conference on Applied Crystallography, Zakopane, Poland (2009)
Kostka, A.; Song, J.; Raabe, D.; Veehmayer, M.: Microstructure and properties of interfaces formed by explosion cladding of Ti-Steel. XXI Conference on Applied Crystallography, Zakopane, Poland (2009)
Song, J.: Explosive Cladding of Titanium onto Low Carbon Steel. International SurMat Workshop, Department of Material Science and Engineering, Ruhr-Universität Bochum, Bochum, Germany (2008)
Song, J.: Microstructure and properties of interfaces formed by explosion cladding of Titanium to low Carbon steel. Dissertation, Ruhr-University Bochum, Bochum, Germany (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
In this project, we study the atomistic structure and phase transformations of tilt grain boundaries in Cu by using aberration-corrected scanning transmission electron microscope to build a relation to the transport properties of the grain boundaries via macroscopic tracer diffusion experiments. In the meantime, we address the impact of the grain…