Scheu, C.: Grain growth and dewetting of thin Al films on (0001) Al2O3 substrates. 3 Phase, Interface, Component Systems (PICS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Marseille, France (accepted)
Scheu, C.: In-situ Transmission Electron Microscopy Observation of Heat-Induced Structural Changes of 3D Nb3O(OH) Networks. Electronic Materials and Applications 2017 (EMA), Orlando, FL, USA (2017)
Scheu, C.: Insights into structural and functional properties of Nb3O7(OH) and TiO2 nanoarrays. European Materials Research Society’s (EMRS) Fall Meeting, Warsaw, Poland (2016)
Scheu, C.: Transmission electron microscopy – a versatile tool to study the microstructure of HT-PEMFC. Materials Science 2016, Atlanta, GA, USA (2016)
Scheu, C.: Insights into structural and functional properties of nano-structured electrodes for energy and fuel generating devices. Talk at Helmholtz‐Zentrum Geesthacht, Geesthacht, Germany (2016)
Scheu, C.: Correlative STEM & Atom Probe Tomography (ATP): Insights in the k-carbide/austenite interface. Workshop on “New trends in electron microscopy”, Ringberg Castle, Kreuth am Tegernsee, Germany (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Insights into degradation processes in WO3-x based anodes of HT-PEMFCs via electron microscopic techniques. Fuel Cells Science and Technology 2016 , Glasgow, Scotland, UK (2016)
Folger, A.; Wisnet, A.; Scheu, C.: Defects in as-grown vs. annealed rutile titania nanowires and their effect on properties. EMC 2016, 16th European Microscopy Congress, Lyon, France (2016)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Welsch, M. T.; Scheu, C.: Template-free synthesized high surface area 3D networks of Pt on WO3-x – a promising alternative for H2 oxidation in fuel cell application. 2016 MRS Fall Meeting, Boston, MA, USA (2016)
Hieke, S. W.; Dehm, G.; Scheu, C.: Investigation of solid state dewetting phenomena of epitaxial Al thin films on sapphire using electron microscopy. The 16th European Microscopy Congress (EMC 2016), Lyon, France (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.