Pinson, M.; Claeys, L.; Springer, H.; Bliznuk, V.; Depover, T.; Verbeken, K.: Investigation of the effect of carbon on the reversible hydrogen trapping behavior in lab-cast martensitic Fe–C steels. Materials Characterization 184, 111671 (2022)
Pinson, M.; Nikolic, K.; Springer, H.; Depover, T.; Verbeken, K.: Comparison between the hydrogen embrittlement behavior of an industrial and a lightweight bearing steel. Procedia Structural Integrity 42, pp. 471 - 479 (2022)
Springer, H.; Baron, C.; Tanure, L.; Rohwerder, M.: A combinatorial study of the effect of Al and Cr additions on the mechanical, physical and corrosion properties of Fe. Materials Today Communications 29, 102947 (2021)
Pinson, M.; Springer, H.; Depover, T.; Verbeken, K.: The effect of quench cracks and retained austenite on the hydrogen trapping capacity of high carbon martensitic steels. International Journal of Hydrogen Energy 46 (29), pp. 16141 - 16152 (2021)
Baron, C.; Werner, H.; Springer, H.: On the effect of carbon content and tempering on mechanical properties and stiffness of martensitic Fe–18.8Cr–1.8B–xC high modulus steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 809, 141000 (2021)
Pinson, M.; Springer, H.; Depover, T.; Verbeken, K.: Qualification of the in-situ bending technique towards the evaluation of the hydrogen induced fracture mechanism of martensitic Fe–C steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 792, 139754 (2020)
Baron, C.; Springer, H.: Property-Driven Development of Metallic Structural Materials by Combinatorial Techniques on the Example of Fe–C–Cr Steels. Steel Research International 90 (12), 1900404 (2019)
Springer, H.; Zhang, J.; Szczepaniak, A.; Belde, M. M.; Gault, B.; Raabe, D.: Light, strong and cost effective: Martensitic steels based on the Fe - Al - C system. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 762, 138088 (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.