Fujita, N.; Igi, S.; Diehl, M.; Roters, F.; Raabe, D.: The through-process texture analysis of plate rolling by coupling finite element and fast Fourier transform crystal plasticity analysis. Modelling and Simulation in Materials Science and Engineering 27, 085005 (2019)
Diehl, M.; Kertsch, L.; Traka, K.; Helm, D.; Raabe, D.: Site-specific quasi in situ investigation of primary static recrystallization in a low carbon steel. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 755, pp. 295 - 306 (2019)
Wang, D.; Diehl, M.; Roters, F.; Raabe, D.: On the role of the collinear dislocation interaction in deformation patterning and laminate formation in single crystal plasticity. Mechanics of Materials 125, pp. 70 - 79 (2018)
Diehl, M.: Review and outlook: mechanical, thermodynamic, and kinetic continuum modeling of metallic materials at the grain scale. MRS Communications 7 (4), pp. 735 - 746 (2017)
Diehl, M.; Groeber, M.; Haase, C.; Roters, F.; Raabe, D.: Identifying Structure–Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach. JOM-Journal of the Minerals Metals & Materials Society 69 (5), pp. 848 - 855 (2017)
Diehl, M.; Wicke, M.; Shanthraj, P.; Roters, F.; Brueckner-Foit, A.; Raabe, D.: Coupled Crystal Plasticity–Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation. JOM-Journal of the Minerals Metals & Materials Society 69 (5), pp. 872 - 878 (2017)
Zhang, H.; Diehl, M.; Roters, F.: A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations. International Journal of Plasticity 80, pp. 111 - 138 (2016)
Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Perlado, J. M.; Marian, J.: Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calcula- tions. International Journal of Plasticity 78, pp. 242 - 265 (2016)
Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Roters, F.: Neighborhood influences on stress and strain partitioning in dual-phase microstructures. An investigation on synthetic polycrystals with a robust spectral-based numerical method. Meccanica 51 (2), pp. 429 - 441 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.