Betzler, S. B.; Koh, A. L.; Lotsch, B. V.; Sinclair, R.; Scheu, C.: Atomic Resolution Observation of the Oxidation of Niobium Nanowires: Implications for Renewable Energy Applications. ACS Applied Nano Materials 3 (9), pp. 9285 - 9292 (2020)
Zhang, S.; Diehl, L.; Wrede, S.; Lotsch, B. V.; Scheu, C.: Structural Evolution of Ni-Based Co-Catalysts on [Ca2Nb3O10]− Nanosheets during Heating and Their Photocatalytic Properties. Catalysts 10 (1), 13 (2020)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: Photocatalysts, cocatalysts, and a case study on their structural design. 1st International Meeting on Alternative & Green Energies, Mohammedia, Morocco (2018)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: In-situ heating study on the growth of NiOx nanoparticles on photocatalytic supports. International GRK 1896 Satellite Symposium “In Situ Microscopy with Electrons, X-rays and Scanning Probes, Erlangen, Germany (2017)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: NiOx cocatalysts on nanosheets for photocatalytic water splitting. nanoGe Fall Meeting 2018, Torremolinos, Spain (2018)
Gänsler, T.: Synthesis Approaches to Nb3O7(OH) Nanostructures and New Studies on Their Growth Mechanism. Master, Ludwig-Maximilians-Universität, München, Germany (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…