Strondl, A.; Palm, M.; Gnauk, J.; Frommeyer, G.: Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM). Materials Science and Technology 27 (5), pp. 876 - 883 (2011)
Jiménez, J.A.; Frommeyer, G.: Analysis of the microstructure evoluting during tensile testing at room temperature of high-manganese austenitic stee. Materials Characterization 61 (21), pp. 221 - 226 (2010)
Pozuelo, M.; Wittig, J.A.; Jiménez, J.A.; Frommeyer, G.: Enhanced Mechanical Properties of a Novel High-Nitrogen Cr–Mn–Ni–Si Austenitic Stainless Steel via TWIP/TRIP Effects. Metallurgical and Materials Transactions A 40 (8), pp. 1826 - 1834 (2009)
Jiménez, J.A.; Carsi, M.; Ruano, O.A.; Frommeyer, G.: Effect of testing temperature and strain rate on the transformation behaviour of retained austenite in low-alloyed multiphase steel. Materials Science and Engineering A 508, pp. 195 - 199 (2009)
Frommeyer, G.; Rablbauer, R.: High temperature materials based on the intermetallic compound NiAl reinforced by refractory metals for advanced energy conversion technologies. Steel Research International 79, pp. 507 - 513 (2008)
Strondl, A.; Fischer, R.; Frommeyer, G.; Schneider, A.: Investigations of MX and γ'/γ'' precipitates in the nickel-based superalloy 718 produced by electron beam melting. Materials Science and Engineering A 480, pp. 138 - 147 (2008)
Wittig, J.E.; Frommeyer, G.: Deformation and fracture behavior of rapidly solidified and annealed iron-silicon alloys. Metallurgical and Materials Transaction A 39A, pp. 252 - 264 (2008)
Deges, J.; Rablbauer, R.; Frommeyer, G.; Schneider, A.: Observation of boron enrichments in a heat treated quasibinary hypoeutectic NiAl-HfB2 alloy by means of atom probe field-ion microscopy (APFIM). Surface and Interface Analysis 39, pp. 251 - 156 (2007)
Frommeyer, G.: Die Singularitäten des Eisens bestimmen die universellen Eigenschaften der Stähle. Teil 1: Bildung-Struktur-Magnetismus-Transformation des Eisens. Stahl und Eisen 127 (10), pp. 53 - 64 (2007)
Frommeyer, G.: Die Singularitäten des Eisens bestimmen die universellen Eigenschaften der Stähle. Teil 2: Plastizität, Verfestigungsmechanismen und Mischkristallhärtung des krz Eisens. Stahl und Eisen 127 (11), pp. 97 - 110 (2007)
Frommeyer, G.: Die Singularitäten des Eisens bestimmen die universellen Eigenschaften der Stähle. Teil 3: Stahl-Innovationen. Stahl und Eisen 127 (12), pp. 67 - 82 (2007)
Frommeyer, G.; Kowalski, W.; Rablbauer, R.: Structural superplasticity in a fine-grained eutectic intermetallic NiAl-Cr alloy. Metallurgical and Materials Transactions A 37A, pp. 3511 - 3517 (2007)
Jimenez, J.A.; Frommeyer, G.; Lopez, M.; Candela, N.; Ruano, O.A.: Mechanical properties of composite materials consisting of M3/2 high speed steel reinforced with niobium carbides. Materials Science Forum 539-543, pp. 756 - 761 (2007)
Frommeyer, G.; Brüx, U.: Microstructures and Mechanical Properties of High-Strength Fe–Mn–Al–C Light-Weight TRIPLEX Steels. Steel Research International 77 (9-10), pp. 627 - 633 (2006)
Frommeyer, G.; Gnauk, J.; Frech, W.; Zeller, S.: Shape flow casting and in-rotating-liquid-spinning processes for the continuous production of wires and of high-strength and soft magnetic metallic fibres. ISIJ International 46 (12), pp. 1858 - 1868 (2006)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
A high degree of configurational entropy is a key underlying assumption of many high entropy alloys (HEAs). However, for the vast majority of HEAs very little is known about the degree of short-range chemical order as well as potential decomposition. Recent studies for some prototypical face-centered cubic (fcc) HEAs such as CrCoNi showed that…
Electron channelling contrast imaging (ECCI) is a powerful technique for observation of extended crystal lattice defects (e.g. dislocations, stacking faults) with almost transmission electron microscopy (TEM) like appearance but on bulk samples in the scanning electron microscope (SEM).
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…
We simulate the ionization contrast in field ion microscopy arising from the electronic structure of the imaged surface. For this DFT calculations of the electrified surface are combined with the Tersoff-Hamann approximation to electron tunneling. The approach allows to explain the chemical contrast observed for NiRe alloys.
Decarbonisation of the steel production to a hydrogen-based metallurgy is one of the key steps towards a sustainable economy. While still at the beginning of this transformation process, with multiple possible processing routes on different technological readiness, we conduct research into the related fundamental scientific questions at the MPIE.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…