Lymperakis, L.: Surface rehybridization and strain effects on the composition and the properties of ternary III Nitride alloys. 19th International Conference on Crystal Growth and Epitaxy, Keystone, CO, USA (2019)
Lymperakis, L.: Elastically Frustrated Rehybridization: Implications in Alloy Ordering and Strong Compositional Limitations in Epitaxial InGaN Films. 1st German Austrian Conference of Crystal Growth, Vienna, Austria (2018)
Lymperakis, L.: Physics, growth mechanisms, and peculiarities of III-N surfaces from ab-initio. Seminar at Institute for solid state physics, Technical University Berlin, Berlin, Germany (2017)
Lymperakis, L.: Elastically frustrated rehybridization of InGaN surfaces: Implications on growth temperature and alloy ordering. Spring school on short period superlattices, Warsaw, Poland (2017)
Lymperakis, L.: Epitaxial Growth of III-Nitrides: Insights from Density Functional Theory Calculations. Seminar at University of Crete, Physics Department, Crete, Greece (2016)
Lymperakis, L.: Interplay of kinetics and thermodynamics of epitaxially grown wide bandgap semiconductors. 10th Asian-European Conference on Plasma Surface Engineering, Jeju Island, South Korea (2015)
Lymperakis, L.; Weidlich, P. H.; Eisele, H.; Schnedler, M.; Nys, J.-P.; Grandidier, B.; Stievenard, D.; Dunin-Borkowski, R.; Neugebauer, J.; Ebert, P.: Revealing Hidden Surface States of Non-Polar GaN Facets by an Ab Initio Tailored STM Approach. 10th International Conference on Nitride Semiconductors, Washigton DC, USA (2013)
Schulz, T.; Remmele, T.; Markurt, T.; Korytov, M.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.: Alloy fluctuations in III-Nitrides revisited by aberration corrected transmission electron microscopy. International Workshop on Nitride Semiconductors 2012, Sapporo, Japan (2012)
Lymperakis, L.: Ab initio calculations of energetics, adatom kinetics, and electronic structure of nonpolar and semipolar III-Nitride surfaces. PolarCoN Summer School, Kostanz, Germany (2012)
Albrecht, M.; Markurt, T.; Schulz, T.; Lymperakis, L.; Duff, A.; Neugebauer, J.; Drechsel, P.; Stauss, P.: Dislocation Mechanisms and Strain Relaxation in the Growth of GaN on Silicon Substrates for Solid State Lighting. International Conference on Extended Defects in Semiconductors, Thessaloniki, Greek (2012)
Lymperakis, L.; Albrecht, M.; Neugebauer, J.: Excitonic emission from a-type screw dislocations in GaN. International Conference on Extended Defects in Semiconductors, Thessaloniki, Greek (2012)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: Towards an ab-initio based understanding of H-embrittlement: An atomistic study of the HELP mechanism. Joint Hydrogenius and ICNER International Workshop on Hydrogen-Materials Interactions, Kyushu, Japan (2012)
Duff, A.; Lymperakis, L.; Neugebauer, J.: Ab-initio based comparitive study of In incorporation and surface segregation on III- and N-face {0001} InGaN surfaces. 9th International Conference of Nitride Semi-Conductors, Glasgow, UK (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…