Gutiérrez-Urrutia, I.: Electron channelling contrast imaging under controlled diffraction conditions: A powerful technique for quantitative microstructural characterization of deformed materials. International Symposium on Plastic Deformation and Texture Analysis, Alcoy, Spain (2012)
Gutiérrez-Urrutia, I.; Marceau, R. K. W.; Raabe, D.: Multi-scale investigation of strain-hardening mechanisms in high-Mn steels from the mesoscale to the atomic scale. Lecture at Materials Department, Oxford University, Oxford, UK (2012)
Chen, Z.; Boehlert, C.; Gutiérrez-Urrutia, I.; Llorca, J.; Pérez-Prado, M. T.: In-situ analysis of the tensile deformation mechanisms in rolled AZ31. TMS 2012 Annual Meeting, Orlando, FL, USA (2012)
Gutiérrez-Urrutia, I.; Raabe, D.: Evaluation of twin boundary interfaces to strain hardening by electron channeling contrast imaging. TMS 2012 Annual Meeting, Orlando, FL, USA (2012)
Gutiérrez-Urrutia, I.: Electron channeling contrast imaging: A powerful technique for quantitative microstructural characterization of deformed materials in the SEM. Seminar at Bundesanstalt fuer Materialforschung-pruefung (BAM), Berlin, Germany (2012)
Gutiérrez-Urrutia, I.; Raabe, D.: New insights on quantitative microstructure characterization by electron channeling contrast imaging under controlled diffraction conditions in the SEM. Microscopy & Microanalysis, Phoenix, AZ, USA (2012)
Gutierrez-Urrutia, I.; Raabe, D.: Study of deformation twinning and planar slip in a TWIP steel by Electron Channelling Contrast Imaging in a SEM. International Conference on the Textures of Materials, ICOTOM 16, Bombay, India (2011)
Pérez-Prado, M. T.; Boehlert, C.; Llorca, J.; Gutiérrez-Urrutia, I.: In-situ analysis of deformation and recrystallization mechanisms. European Congress on Advanced Materials and Processes, EUROMAT 2011, Montpellier, France (2011)
Gutierrez-Urrutia, I.; Raabe, D.: Dislocation imaging by electron channeling contrast under controlled diffraction conditions in the SEM. Microscopy Conference MC 2011, Kiel, Germany (2011)
Gutierrez-Urrutia, I.; Dick, A.; Hickel, T.; Neugebauer, J.; Raabe, D.: Understanding TWIP steel microstructures by using advanced electron microscopy and ab initio predictions. International Conference on Processing & Manufacturing of Advanced Materials THERMEC 2011, Québec City, QC, Canada (2011)
Gutierrez-Urrutia, I.; Raabe, D.: The influence of planar slip and deformation twinning on mechanical behavior in TWIP steels. International Conference on Processing & Manufacturing of Advanced Materials THERMEC 2011, Québec City, QC, Canada (2011)
Raabe, D.; Gutierrez-Urrutia, I.: Effect of strain path and texture on microstructure in Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. 1st International Conference on High Manganese Steels 2011, Seoul, South Korea (2011)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Effect of grain size and heterogeneous strain distribution on deformation twinning in a Fe–22Mn–0.6C TWIP steel. THERMEC 2009, Berlin, Germany (2009)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Quantitative electron channelling contrast imaging: A promising tool for the study of dislocation structures in SEM. Electron Backscatter Diffraction Meeting, Swansea, UK (2009)
Archie, F. M. F.: Nanostructured High-Mn Steels by High Pressure Torsion: Microstructure-Mechanical Property Relations. Master, Materials Chemistry, Lehrstuhl für Werkstoffchemie, RWTH Aachen, Aachen, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.