Zambaldi, C.; Raabe, D.: Surface Topographies after Nanoindentation and their Utilization to Quantify the Plastic Anisotropy of Gamma-TiAl on the Single Crystal Length Scale. MMM 2010, Freiburg, Germany (2010)
Zambaldi, C.; Roters, F.; Raabe, D.: Crystal plasticity modeling and experiments to improve the micromechanical understanding of single crystal gamma-TiAl and gamma-TiAl based microstructures. MMM 2010 Fifth International Conference Multiscale Materials Modeling, Freiburg, Germany (2010)
Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Surface Topographies after Nanoindentation and their Utilization to Quantify the Plastic Anisotropy of Gamma-TiAl on the Single Crystal Length Scale. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Zambaldi, C.; Roters, F.; Raabe, D.: How nanoindentation experiments and continuum crystal plasticity simulation can efficiently complement TEM dislocation analysis. 2nd Newcastle Nanoindentation Conference, Newcastle upon Tyne, UK (2010)
Zambaldi, C.; Raabe, D.; Roters, F.: Quantifying the plastic anisotropy of gamma-TiAl by axisymmetric indentation. International TiAl Workshop, Birmingham, UK (2010)
Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Crystal plasticity modeling for property extraction and the microstructure properties relation of intermetallic -TiAl nased alloys. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Zambaldi, C.; Roters, F.; Raabe, D.: Crystal plasticity modeling and experiments for the microstructureproperties relationship in gamma TiAl based alloys. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Ductility of Gamma-TiAl-Based Microstructures in the Light of Deformation Mode Interaction-Crystal Plasticity Modeling and Micro-Mechanical Experiments. MRS Fall Conference 2008, Boston, MA, USA (2008)
Zambaldi, C.; Wright, S. I.; Zaefferer, S.: Determination of Texture and Microstructure of Ordering Domains in gamma-TiAl. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Zambaldi, C.; Zaefferer, S.; Roters, F.; Raabe, D.: Micro-mechanical implications of TiAl order domains. The annual plenary meeting of the EU sixth framework programme IMPRESS integrated project, Camogli, Italy (2008)
Zambaldi, C.; Zaefferer, S.; Roters, F.: Order domains in intermetallic TiAl - EBSD characterization and crystal plasticity modeling. GLADD meeting, University of Gent, Gent, Belgium (2008)
Zambaldi, C.: Primary Recrystallization of a Single-Crystal Nickel-Base Superalloy — Simulations and Experimental Results. High Temperature Alloys Workshop and Summer School, Bad Berneck (2006)
Zambaldi, C.; Roters, F.; Raabe, D.: Spherical indentation modeling for the investigation of primary recrystallization in a single-crystal nickel-base superalloy. Plasticity, Halifax, Canada (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.; Zambaldi, C.: 3D EBSD characterization and crystal plasticity FE simulation of the texture and microstructure below a nanoindent in Cu. Plasticity Conference 2006, Halifax, Canada (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a micromechanical metrology technique based on thin film deposition and dewetting to rapidly assess the dynamic thermomechanical behavior of multicomponent alloys. This technique can guide the alloy design process faster than the traditional approach of fabrication of small-scale test samples using FIB milling and…
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.