Ikeda, Y.; Tanaka, I.; Neugebauer, J.; Körmann, F.: Impact of interstitial C on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy alloy. Physical Review Materials 3 (11), 113603 (2019)
Ikeda, Y.; Grabowski, B.; Körmann, F.: Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys. Materials Characterization 147, pp. 464 - 511 (2019)
Ikeda, Y.; Körmann, F.; Tanaka, I.; Neugebauer, J.: Impact of chemical fluctuations on stacking fault energies of CrCoNi and CrMnFeCoNi high entropy alloys from first principles. Entropy 20 (9), 655 (2018)
Dutta, B.; Körmann, F.; Hickel, T.; Neugebauer, J.: Impact of Co and Fe doping on the martensitic transformation and the magnetic properties in Ni–Mn-based Heusler alloys. Physica Status Solidi B, 1700455 , pp. 1 - 7 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.