Žeradjanin, A. R.; Topalov, A. A.; Cherevko, S.; Keeley, G. P.: Sustainable generation of hydrogen using chemicals with regional oversupply - Feasibility of the electrolysis in acido-alkaline reactor. International Journal of Hydrogen Energy 39 (29), pp. 16275 - 16281 (2014)
Grote, J.-P.; Žeradjanin, A. R.; Cherevko, S.; Mayrhofer, K. J. J.: Coupling of a scanning flow cell with online electrochemical mass spectrometry for screening of reaction selectivity. Review of Scientific Instruments 85 (10), 104101 (2014)
Žeradjanin, A. R.: Impact of the spatial distribution of morphological patterns on the efficiency of electrocatalytic gas evolving reactions. Journal of the Serbian Chemical Society 79 (3), pp. 325 - 330 (2014)
Žeradjanin, A. R.; Menzel, N.; Schuhmann, W.; Strasser, P.: On the faradaic selectivity and the role of surface inhomogeneity during the chlorine evolution reaction on ternary Ti–Ru–Ir mixed metal oxide electrocatalysts. Physical Chemistry Chemical Physics 16 (27), pp. 13741 - 13747 (2014)
Ledendecker, M.; Mondschein, J. S.; Žeradjanin, A. R.; Cherevko, S.; Geiger, S.; Schalenbach, M.; Schaak, R. E.; Mayrhofer, K. J. J.: Stability of binary metallic ceramics in the HER reaction - feasible HER electrocatalysts in acidic medium? In Abstracts of Papers of the American Chemical Society, 254, 350. 254th National Meeting and Exposition of the American-Chemical-Society
(ACS) on Chemistry's Impact on the Global Economy, Washington, DC, August 20, 2017 - August 24, 2017. (2017)
Grote, J.-P.; Žeradjanin, A. R.; Cherevko, S.; Mayrhofer, K. J. J.: Electrochemical CO2 Reduction: A Combinatorial High-Throughput Approach for Catalytic Activity, Stability and Selectivity Investigations. International Conference on Combinatorial Materials Research, Ghent, Belgium (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…