Abu-Farsakh, H.; Neugebauer, J.: Enhancing nitrogen solubility in GaAs and InAs by surface kinetics: An ab initio study. Physical Review B 79, 155311, pp. 155311 - 155323 (2009)
Abu-Farsakh, H.; Neugebauer, J.: Exploring the unusual diffusion of N adatoms on GaAs(001) using first principles calculations. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Abu-Farsakh, H.; Neugebauer, J.: Exploring the unusual diffusion of N adatoms at GaAs(001) surface. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Abu-Farsakh, H.; Neugebauer, J.: Enhancing N solubility in diluted nitrides by surface kinetics: An ab-initio study. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Abu-Farsakh, H.; Neugebauer, J.: Ab-initio study of the thermodynamics and kinetics of N at GaAs(001) surface. PAW workshop 2007, Goslar, Germany (2007)
Abu-Farsakh, H.; Neugebauer, J.: In-N anti-correlation in InGaAsN alloys: The delicate interplay between adatom thermodynamics and kinetics. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Abu-Farsakh, H.; Neugebauer, J.: Tailoring the N-solubility in InGaAs-alloys by surface engineering: Applications and limits. 1. Harzer Ab initio Workshop, Clausthal, Germany (2006)
Abu-Farsakh, H.; Neugebauer, J.: Incorporation of N at GaAs and InAs surfaces: An ab-initio study. Technische Universität Berlin, Berlin, Germany (2006)
Abu-Farsakh, H.; Dick, A.; Neugebauer, J.: Incorporation of N at GaAs and InAs surfaces. Deutsche Physikalische Gesellschaft Spring Meeting of the Division Condensed Matter, Dresden, Germany (2006)
Abu-Farsakh, H.; Neugebauer, J.: Combined ab-initio and Monte Carlo calculations to explore the surface thermodynamics and kinetics of dilute nitrides. 8th International Conference on Nitride Semiconductors (ICNS-8), Jeju Island, South Korea (2009)
Abu-Farsakh, H.; Neugebauer, J.: The role of surface kinetics in achieving high non-equilibrium N concentrations in bulk GaAs. DPG Spring Meeting 2009, Dresden, Germany (2009)
Abu-Farsakh, H.; Neugebauer, J.; Albrecht, M.: Ab-initio study of compositional anti-correlation of In and N in InGaAsN alloys. The 7th International Conference of Nitride Semiconductors (ICNS-7), Las Vegas, NV, USA (2007)
Abu-Farsakh, H.; Neugebauer, J.: Enhancing the solubility of N in GaAs and InAs by surface kinetics. 28th International Conference on the Physics of Semiconductors, Vienna, Austria (2006)
Abu-Farsakh, H.; Neugebauer, J.: Enhancing bulk solubility by surface engineering: An ab-initio study. Workshop: Ab initio Description of Iron and Steel, Status and future challenges, Ringberg Castle, Germany (2006)
Abu-Farsakh, H.: Understanding the interplay between thermodynamics and surface kinetics in the growth of dilute nitride alloys from first principles. Dissertation, University of Paderborn, Paderborn, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…