Tan, A. M. Z.; Freysoldt, C.; Hennig, R. G.: First-principles investigation of charged dopants and dopant-vacancy defect complexes in monolayer MoS2. Physical Review Materials 4 (11), 114002 (2020)
Tan, A. M. Z.; Freysoldt, C.; Hennig, R. G.: Stability of charged sulfur vacancies in 2D and bulk MoS2 from plane-wave density functional theory with electrostatic corrections. Physical Review Materials 4 (6), 064004 (2020)
Freysoldt, C.; Neugebauer, J.: First-principles calculations for charged defects at surfaces, interfaces, and two-dimensional materials in the presence of electric fields. Physical Review B 97 (20), 205425 (2018)
Wang, J.; Freysoldt, C.; Du, Y.; Sun, L.: First-Principles study of intrinsic defects in ammonia borane. The Journal of Physical Chemistry C 121 (41), pp. 22680 - 22689 (2017)
Freysoldt, C.: On-the-fly parameterization of internal coordinate force constants for quasi-Newton geometry optimization in atomistic calculations. Computational Materials Science 133, pp. 71 - 81 (2017)
Koprek, A.; Cojocaru-Mirédin, O.; Würz, R.; Freysoldt, C.; Gault, B.; Raabe, D.: Cd and Impurity Redistribution at the CdS/CIGS Interface After Annealing of CIGS-Based Solar Cells Resolved by Atom Probe Tomography. IEEE Journal of Photovoltaics 7 (1), 7762819, pp. 313 - 321 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…