Strondl, A.; Fischer, R.; Frommeyer, G.; Schneider, A.: Investigations of MX and γ'/γ'' precipitates in the nickel-based superalloy 718 produced by electron beam melting. Materials Science and Engineering A 480, pp. 138 - 147 (2008)
Deges, J.; Rablbauer, R.; Frommeyer, G.; Schneider, A.: Observation of boron enrichments in a heat treated quasibinary hypoeutectic NiAl-HfB2 alloy by means of atom probe field-ion microscopy (APFIM). Surface and Interface Analysis 39, pp. 251 - 156 (2007)
Bello-Rodriguez, B.; Schneider, A.; Hassel, A. W.: Preparation of Ultramicroelectrode Array of Gold Hemispheres on Nanostructured NiAl-Re. J. Electrochem. Soc. 153 (1), pp. C33 - C36 (2006)
Milenkovic, S.; Hassel, A. W.; Schneider, A.: Effect of the Growth Conditions on the Spatial Features of Re Nanowires Produced by Directional Solidification. Nano Letters 6 (4), pp. 794 - 799 (2006)
Stallybrass, C.; Schneider, A.; Sauthoff, G.: The strengthening effect of (Ni, Fe)Al precipitates on the mechanical properties at high temperatures of ferritic Fe–Al–Ni–Cr alloys. Intermetallics 13 (12), pp. 1263 - 1268 (2005)
Hassel, A. W.; Bello-Rodriguez, B.; Milenkovic, S.; Schneider, A.: Electrochemical Production of Nanopore Arrays into a Nickel Aluminium Alloy. Electrochimica Acta 50, pp. 3033 - 3039 (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The precipitation of intermetallic phases from a supersaturated Co(Nb) solid solution is studied in a cooperation with the Hokkaido University of Science, Sapporo.
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…