Milenkovic, S.; Drensler, S.; Hassel, A. W.: A novel concept for the preparation of alloy nanowires. Physical Status Solidi A-Applications and Materials Science 208 (6), pp. 1259 - 1264 (2011)
Chen, Y.; Milenkovic, S.; Hassel, A. W.: Reactivity of Gold Nanobelts with Unique {110} Facets. A European Journal of Chemical Physics and Physical Chemistry 11 (13), pp. 2838 - 2843 (2010)
Hassel, A. W.; Bello-Rodriguez, B.; Smith, A. J.; Chen, Y.; Milenkovic, S.: Preparation and specific properties of single crystalline metallic nanowires. Physica Status Solidi B 247, pp. 2380 - 2392 (2010)
Milenkovic, S.; Smith, A. J.; Hassel, A. W.: Single crystalline Molybdenum nanowires and nanowire arrays. J. Nanosci. Nanotechnol. 9 (6), pp. 3411 - 3417(7) (2009)
Cimalla, V.; Röhlig, C.-C.; von Pezoldt, J.; Niebelschütz, M.; Ambacher, O.; Brückner, K.; Hein, M.; Weber, J.; Milenkovic, S.; Smith, A. J.et al.; Hassel, A. W.: Nanomechanics of single crystalline tungsten nanowires. J. Nanomater. 2008, pp. 638947 - 638956 (2008)
Brittman, S.; Smith, A. J.; Milenkovic, S.; Hassel, A. W.: Copper Nanowires and Silver Micropore Arrays from the Electrochemical Treatment of a Directionally Solidified Silver-Copper Eutectic. Electrochim. Acta 53, pp. 324 - 329 (2007)
Hassel, A. W.; Milenkovic, S.; Schürmann, U.; Greve, H.; Zaporojtchenko, V.; Adelung, R.; Faupel, F.: Model systems with tuneable geometry and surface functionality for a quantitative investigation of the Lotus effect. Langmuir 23, pp. 2091 - 2094 (2007)
Milenkovic, S.; Hassel, A. W.; Schneider, A.: Effect of the Growth Conditions on the Spatial Features of Re Nanowires Produced by Directional Solidification. Nano Letters 6 (4), pp. 794 - 799 (2006)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…