Marquardt, O.; Hickel, T.; Neugebauer, J.: Polarization-induced charge carrier separation in realistic polar and nonpolar GaN quantum dots. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Mitra, C.; Freysoldt, C.; Neugebauer, J.: Band alignment in the framework of GW theory. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: Ab initio investigations of the silicon dangling bond. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Kinetic Monte Carlo simulations and ab initio studies of nano-precipitation in ferritic steels. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Todorova, M.; Neugebauer, J.: Stabilization of polar ZnO surfaces. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Computational study of interstitial ordering in bcc iron. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
von Pezold, J.; Aydin, U.; Neugebauer, J.: Strain-induced metal-hydrogen interactions across the first transition series - An ab initio study of hydrogen embrittlement. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Zhu, L.-F.; Dick, A.; Friák, M.; Hickel, T.; Neugebauer, J.: First principles study of thermodynamic, structural and elastic properties of eutectic Ti-Fe alloys. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Ab initio up to the melting point: Efficient sampling strategies of anharmonic free energies. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Hickel, T.; Uijttewaal, M.; Al-Zubi, A.; Neugebauer, J.: Ab initio simulation of magnetic shape memory alloys: The interplay of magnetic and vibrational degrees of freedom. Oberseminar: Ultraschnelle Dynamik in Festkörpern und an Grenzflächen, Fakultät für Physik, Universtität Duisburg-Essen, Duisburg, Germany (2010)
Elstnerová, P.; Friák, M.; Neugebauer, J.: Ab initio study of calcite substituted by Mg and P. Seminar talk at Masaryk University, Brno, Czech Republic (2009)
Hickel, T.; Neugebauer, J.: Simulation tools for ab initio steel design. CM Special Workshop on "Ab initio Description of Iron, Steel and Related Materials", MPIE, Düsseldorf, Germany (2009)
Nazarov, R.; Hickel, T.; Neugebauer, J.: Wasserstoff in X-IP Stahl (ab initio): Einfluss von Defekten auf die Energetik und Dynamik von Wasserstoff in Manganstählen. X-IP Workshop, Dortmund, Germany (2009)
Elstnerová, P.; Friák, M.; Neugebauer, J.: Ab initio study of calcite substituted by Mg and P. Multiscale design modeling 2009, Brno, Czech Republic (2009)
Nikolov, S.; Petrov, M.; Lymperakis, L.; Friák, M.; Sachs, C.; Fabritius, H.; Neugebauer, J.; Raabe, D.: Extremal stiffness of crustacean cuticle through hierarchical optimization: Theory, modeling, and experiment. 3rd International Conference on Mechanics of Biomaterials & Tissues, multiscale modeling of tissue mechanical properties, Clearwater Beach, FL, USA (2009)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Ab initio Determined Fundamental Materials-design Limits in Mg–Li–X (X = Al, Si, Zn, Ca, Cu) Ternaries. Materials Research Society (MRS) meeting, Boston, MA, USA (2009)
Dick, A.; Hickel, T.; Neugebauer, J.: Ab Initio Interfacial Austenite/Martensite Energies for Accurate Stacking Fault Energy Calculations in High-Mn Steels. Materials Research Society 2010 Fall Meeting, Boston, MA, USA (2009)
Freysoldt, C.; Neugebauer, J.: Theory of defect distribution at semiconductor interfaces based on ab-initio thermodynamics. MRS Fall Meeting, Boston, MA, USA (2009)
Freysoldt, C.; Neugebauer, J.: Calculation of defect distribution at interfaces from ab-initio-based thermodynamic data. MRS Fall Meeting, Boston, MA, USA (2009)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…