Khayatan, N.; Prabhakar, J. M.; Jalilian, E.; Madelat, N.; Terryn, H.; Rohwerder, M.: On the rate determining step of cathodic delamination of delamination-resistant organic coatings. Corrosion Science 239, 112396 (2024)
Ravikumar, A.; Höche, D.; Feiler, C.; Lekka, M.; Salicio-Paz, A.; Rohwerder, M.; Prabhakar, J. M.; Zheludkevich, M.: Exploring the Effect of Microstructure and Surface Recombination on Hydrogen Effusion in Zn–Ni-Coated Martensitic Steels by Advanced Computational Modeling. Steel Research International 95 (2), 2300353 (2024)
Venkatachalam, D.; Govindaraj, Y.; Prabhakar, J. M.; Ganapathi, A.; Sakairi, M.; Rohwerder, M.; Neelakantan, L.: Smart release of turmeric as a potential corrosion inhibitor from a pH-responsive polymer encapsulated highly ordered mesoporous silica containers. Surfaces and Interfaces 45, 103883 (2024)
Prabhakar, J. M.; de Vooys, A.; Rohwerder, M.: In situ microscopic investigation of ion migration on the surface of chromium coated steels. npj Materials Degradation 6 (1), 76 (2022)
Govindaraj, Y.; Venkatachalam, D.; Prabhakar, J. M.; Manikandanath, N. T.; Balaraju, J. N.; Rohwerder, M.; Neelakantan, L.: Nano-sized cerium vanadium oxide as corrosion inhibitor: A microstructural and release study. Electrochimica Acta 425, 140696 (2022)
Yin, Y.; Zhao, H.; Prabhakar, J. M.; Rohwerder, M.: Organic composite coatings containing mesoporous silica particles: Degradation of the SiO2 leading to self-healing of the delaminated interface. Corrosion Science 200, 110252 (2022)
Prabhakar, J. M.; de Vooys, A.; Rohwerder, M.: Chromium coatings electrodeposited from trivalent chromium electrolyte: Characterization and their effect on Cathodic Delamination behavior of organic coatings. GfKORR-Jahrestagung, online conference (2020)
Prabhakar, J. M.; de Vooys, A.; Rohwerder, M.: Cathodic delamination behaviour of polymer coatings on chromium coatings electrodeposited from trivalent chromium electrolyte. EUROCORR 2020, virtual Congress (2020)
Prabhakar, J. M.; Ostendorf, A.: Fundamental investigation of the cathodic delamination behaviour of model polymer coating on novel chromium-based coatings electrodeposited from a trivalent chromium-formate electrolyte. Dissertation, Ruhr-Universität Bochum, Fakultät für Maschinenbau (2022)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.