Henke, B.; Keil, P.; Paßlick, C.; Vogel, D.; Rohwerder, M.; Wiegand, M.-C.; Johnson, J. A.; Schweizer, S.: XANES studies on Eu-doped fluorozirconate based glass ceramics. In: Materials Research Society Symposium Proceedings, pp. 137 - 144. Materials Research Society 2010, San Francisco, CA, USA, April 05, 2010 - April 09, 2010. (2010)
Vogel, D.; Borodin, S.; Merzlikin, S. V.; Keil, P.; Rohwerder, M.: Near Ambient Pressure XPS studies on the oxide formation on Fe–2Mn during thermal treatment. ISHOC2014 - International Symposium on High-temperature Oxidation and Corrosion 2014, Hakodate, Hokkaido Japan (2014)
Keil, P.; Salgin, B.; Vogel, D.; Rohwerder, M.: Applications of the Kelvin Probe: From ion mobilty to x-ray/sample interaction. Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany (2010)
Henke, B.; Keil, P.; Paßlick, C.; Wiegand, M. C.; Johnson, J. A.; Schweizer, S.: XANES Studies on Eu-doped Fluorozirconate Based Cermics. MRS Spring Meeting 2010, San Francisco, CA, USA (2010)
Keil, P.; Möllmann, V.; Zuo, J.; Titz, T.; Grundmeier, G.: TiO2 nanocomposite thin films prepared by means of RF-magnetron sputtering. 5th International Materials Symposium, MATERIAIS 2009, Lisbon, Portugal (2009)
Möllmann, V.; Keil, P.; Valtiner, M.; Wagner, R.; Lützenkirchen-Hecht, D.; Frahm, R.; Grundmeier, G.: Structural properties of Ag@TiO2 nanocomposites measured by means of refection mode XAS measurements at beamline 8. Fourth DELTA user meeting, Dortmund, Germany (2008)
Itani, H.; Keil, P.; Grundmeier, G.: Analytical Studies of the Formation of Silver Nanoparticles in Layer by Layer Deposited Polyelectroylte Films. IMPRS for Surface and Interface Engineering in Advanced Materials, Schloss Gnadenthal, Kleve, Germany (2008)
Zuo, J.; Keil, P.; Valtiner, M.; Thissen, P.; Grundmeier, G.: Ag nanostructures on fluoroalkylsilane self assembled monolayers: The dependence on perfluoroalkyl chain length. The 9th International Conference on Nanostructured Materials, Rio de Janeiro, Brazil (2008)
Itani, H.; Keil, P.; Grundmeier, G.: Silver Nanoparticles Embedded in Layer by Layer Polyelectrolyte Thin Films: Investigation of the Formation and Composition of Silver Nanoparticles. First International Conference on FUNCTIONAL NANOCOATING, Budapest, Hungary (2008)
Itani, H.; Keil, P.; Grundmeier, G.: Silver Nanoparticles Embedded in LBL Deposited Polyelectrolyte Thin Films: Investigation of the Formation and Composition of the Silver Nanoparticles. Advanced Processing for Novel Functional Materials APNFM, Dresden, Germany (2008)
Keil, P.; Kluth, P.; Ebbinghaus, P.; Yliniemi, K.; Grundmeier, G.: Structural characterization and barrier properties of silver nanoparticles containing sol-gel films modified by oxidizing and reducing low temperature plasmas. EUROMAT 2007, European Congress and Exhibition an Advanced Materials and Processes, Nürnberg, Germany (2007)
Zuo, J.; Keil, P.; Grundmeier, G.: Structural Characterization of Silver Containing Titania Nanocomposite Films Synthesized by RF-Magneton Sputter Deposition. EUROMAT 2007, European Congress and Exhibition an Advanced Materials and Processes, Nürnberg, Germany (2007)
Vogel, D.; Borodin, S.; Auinger, M.; Keil, P.; Rohwerder, M.: Near Ambient Pressure XPS studies on the oxide formation on Fe–2Mn during thermal treatment. Gordon Research Seminar on High Temperature Corrosion, New London, CT, USA (2013)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.