Yan, D.; Tasan, C. C.; Ponge, D.; Diehl, M.; Roters, F.; Hartmaier, A.; Raabe, D.: Experimental-Numerical Analysis of Stress and Strain Partitioning in Dual Phase Steel. 10th Materials Day, Joint workshop of the Materials Research Department (MRD) and the IMPRS-SurMat, Bochum, Germany (2012)
Scharifi, E.; Tasan, C. C.; Hoefnagels, J. P. M.; Raabe, D.: Microstructural analysis of strain rate sensitivity of dual-phase steel. Materials Science Engineering (MSE) 2012, Dramstadt, Germany (2012)
Herbig, M.; Choi, P.; Raabe, D.: A Sample Holder System that Enables Sophisticated TEM Analysis of APT Tips. International Field Emission Symposium 2012, Tuscaloosa, AL, USA (2012)
Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. 11th GAMM-Seminar on Microstructures, Essen, Germany (2012)
Khorashadizadeh, A.; Raabe, D.: Exploring the formation of different lamination configurations within the orientation space. 11th GAMM-Seminar on Microstructures, Universität Duisburg-Essen, Essen, Germany (2012)
Nematollahi, A.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Thermodynamic and kinetic effects of elastic strain on the decomposition of cementite in wire-draw pearlitic steel. International scientific seminar: Ab-initio description of iron and steel thermodynamics and kinetics, Ringberg Castle, Tegernsee, Germany (2012)
Diehl, M.; Eisenlohr, P.; Roters, F.; Tasan, C. C.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2011)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Atomic-scale analysis of the p-n junction in CI(G)S thin-film solar cells. Euromat 2011, Montpellier, France (2011)
Karsten, E. S.; Fabritius, H.; Raabe, D.: Mechanical properties and deformation behavior of load-bearing parts from the exoskeleton of the crab Cancer pagurus. Euromat 2011 Conference, Montpellier, France (2011)
Sandim, M. J. R.; Stamopoulos, D.; Aristomenopolou, E.; Zaefferer, S.; Raabe, D.; Awaji, S.; Watanabe, K.: Grain structure and irreversibility line of a bronze route CuNb reinforced Nb3Sn multifilamentary wire. Superconductivity Centennial Conference, The Hague, The Netherlands (2011)
Tillack, N.; Hickel, T.; Raabe, D.; Neugebauer, J.: Ab initio study of nano-precipitate nucleation and growth in ferritic steels. Psi-k/CECAM/CCP9 Biennial Graduate School in Electronic-Structure Methods, Oxford, UK (2011)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.