Pauna, H.; Souza Filho, I. R.; Kulse, M.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Fabritius, T.; Raabe, D.: In Situ Observation of Sustainable Hematite-Magnetite-Wustite-Iron Hydrogen Plasma Reduction. Metallurgical and Materials Transactions B 56 (4), pp. 3938 - 3949 (2025)
Jovičević-Klug, M.; Brondin, C. A.; Caretta, A.; Bonnekoh, C.; Gossing, F.; Vogel, A.; Rieth, M.; McCord, J.; Rohwerder, M.; Jovičević-Klug, P.: Suppression of Cr nanoclusters and enrichments in Fe–Cr based alloys with cryogenic processing for future energy sector. Journal of Materials Research and Technology 36, pp. 9262 - 9273 (2025)
Tegg, L.; Ostergaard, H. E.; Jovičević-Klug, M.; Jovičević-Klug, P.; Wu, C.-M.; Cairney, J. M.: In-situ SANS for the kinetic analysis of β″ precipitation in an Al-Mg-Si alloy following deep cryogenic treatment. Journal of Alloys and Compounds, 180371 (2025)
Pauna, H.; Ernst, D.; Zarl, M.; Souza Filho, I. R.; Kulse, M.; Büyükuslu, Ö.; Jovičević-Klug, M.; Springer, H.; Huttula, M.; Schenk, J.et al.; Fabritius, T.; Raabe, D.: The Optical Spectra of Hydrogen Plasma Smelting Reduction of Iron Ore: Application and Requirements. Steel Research International 95 (8), 2400028 (2024)
Jovičević-Klug, P.; Jovičević-Klug, M.; Thormählen, L.; McCord, J.; Rohwerder, M.; Godec, M.; Podgornik, B.: Austenite reversion suppression with deep cryogenic treatment: A novel pathway towards 3rd generation advanced high-strength steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 873, 145033 (2023)
Jovičević-Klug, P.; Tegg, L.; Jovičević-Klug, M.; Parmar, R.; Amati, M.; Gregoratti, L.; Almásy, L.; Cairney, J. M.; Podgornik, B.: Understanding carbide evolution and surface chemistry during deep cryogenic treatment in high-alloyed ferrous alloy. Applied Surface Science 610, 155497 (2023)
Amati, M.; Susi, T.; Jovičević-Klug, P.; Jovičević-Klug, M.; Kosmala, T.; Granozzi, G.; Agnoli, S.; Yang, P.; Zhang, Y.; Scardamaglia, M.et al.; Gregoratti, L.: Scanning photoelectron spectromicroscopy: from static to operando studies of functional materials. Journal of Electron Spectroscopy and Related Phenomena 265, 147336 (2023)
Jovičević-Klug, M.; Tegg, L.; Jovičević-Klug, P.; Dražić, G.; Almásy, L.; Lim, B.; Cairney, J. M.; Podgornik, B.: Multiscale modification of aluminum alloys with deep cryogenic treatment for advanced properties. Journal of Materials Research and Technology 21, pp. 3062 - 3073 (2022)
Jovičević-Klug, P.; Jovičević-Klug, M.; Tegg, L.; Seidler, D.; Thormählen, L.; Parmar, R.; Amati, M.; Gregoratti, L.; Cairney, J.; McCord, J.et al.; Rohwerder, M.; Podgornik, B.: Correlative surface and bulk analysis of deep cryogenic treatment influence on high-alloyed ferrous alloy. Journal of Materials Research and Technology 21, pp. 4799 - 4810 (2022)
Jovičević-Klug, P.; Lipovšek, N.; Jovičević-Klug, M.; Mrak, M.; Ekar, J.; Ambrožič, B.; Dražić, G.; Kovač, J.; Podgornik, B.: Assessment of deep cryogenic heat-treatment impact on the microstructure and surface chemistry of austenitic stainless steel. Surfaces and Interfaces 35, 102456 (2022)
Jovičević-Klug, P.; Sedlaček, M.; Jovičević-Klug, M.; Podgornik, B.: Effect of Deep Cryogenic Treatment on Wear and Galling Properties of High-Speed Steels (Correction: vol 14, 7561, 2021). Materials 15 (20), 7218 (2022)
Jovičević-Klug, P.; Jovičević-Klug, M.; Tóth, L.: Mechanical, Corrosive, and Tribological Degradation of Metal Coatings and Modified Metallic Surfaces. Coatings 12 (7), 886 (2022)
Jovičević-Klug, P.; Guštin, A. Z.; Jovičević-Klug, M.; Šetina Batič, B.; Lebar, A.; Podgornik, B.: Coupled role of alloying and manufacturing on deep cryogenic treatment performance on high-alloyed ferrous alloys. Journal of Materials Research and Technology 18, pp. 3184 - 3197 (2022)
Jovičević-Klug, M.; Rezar, R.; Jovičević-Klug, P.; Podgornik, B.: Influence of deep cryogenic treatment on natural and artificial aging of Al–Mg–Si alloy EN AW 6026. Journal of Alloys and Compounds 899, 163323 (2022)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…