Erbe, A.: Correspondence Regarding the Article “On the Nature of the Evanescent Wave” (Appl. Spectrosc. 2013. 67[2]: 126-130). How “total” is Total Reflection from Powdered Samples? Applied Spectroscopy 67 (6), pp. 699 - 701 (2013)
Jha, D. K.; Shameem, M.; Patel, A. B.; Kostka, A.; Schneider, P.; Erbe, A.; Deb, P.: Simple synthesis of superparamagnetic magnetite nanoparticles as highly efficient contrast agent. Materials Letters 95, pp. 186 - 189 (2013)
Koelsch, P.; Muglali, M. I.; Rohwerder, M.; Erbe, A.: Third-order effects in resonant sum-frequency-generation signals at electrified metal/liquid interfaces. Journal of the Optical Society of America B-Optical Physics 30 (1), pp. 219 - 223 (2013)
Schneider, P.; Sigel, R.; Lange, M. M.; Beier, F.; Renner, F. U.; Erbe, A.: Activation and fluoride-assisted phosphating of aluminium silicon coated steel. ACS Applied Materials and Interfaces 5 (10), pp. 4224 - 4232 (2013)
Khan, T. R.; Vimalanandan, A.; Marlow, F.; Erbe, A.; Rohwerder, M.: Existence of a lower critical radius for incorporation of silica particles into zinc during electro-codeposition. ACS Applied Materials and Interfaces 4 (11), pp. 6221 - 6227 (2012)
Chen, Y.; Schneider, P.; Erbe, A.: Investigation of native oxide growth on zinc in different atmospheres by spectroscopic ellipsometry. Physica Status Solidi A-Applications and Materials Science 209, pp. 846 - 853 (2012)
Gogoi, M.; Deb, P.; Vasan, G.; Keil, P.; Kostka, A.; Erbe, A.: Direct monophasic replacement of fatty acid by DMSA on SPION surface. Applied Surface Science 258, pp. 9685 - 9691 (2012)
Vasan, G.; Erbe, A.: Incidence angle dependence of enhancement factor in attenuated total reflection surface enhanced infrared absorption spectroscopy studied by numerical solution of the vectorial Maxwell equations. Physical Chemistry Chemical Physics 14, pp. 14702 - 14709 (2012)
Reithmeier, M.; Erbe, A.: Application of thin-film interference coatings in infrared reflection spectroscopy of organic samples in contact with thin metal films. Applied Optics 50 (9), pp. C301 - C308 (2011)
Vasan, G.; Chen, Y.; Erbe, A.: Computation of surface-enhanced infrared absorption spectra of particles at a surface through the Finite Element Method. Journal of Physical Chemistry 115 (7), pp. 3025 - 3033 (2011)
Chen, Y.; Hassel, A. W.; Erbe, A.: Enhancement of the electrocatalytic activity of gold nanoparticles towards methanol oxidation. Electrocatalysis 2 (2), pp. 106 - 113 (2011)
Khan, T. R.; Erbe, A.; Auinger, M.; Marlow, F.; Rohwerder, M.: Electrodeposition of zinc-silica composite coatings: Challenges in incorporating functionalized silica particles into a zinc matrix. Science and Technology of Advanced Materials 12 (5), 055005 (2011)
Hamou, F. R.; Biedermann, P. U.; Erbe, A.; Rohwerder, M.: Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. Electrochimica Acta 55 (18), pp. 5210 - 5222 (2010)
Reithmeier, M.; Erbe, A.: Dielectric interlayers increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy. Physical Chemistry Chemical Physics 12, pp. 14798 - 14803 (2010)
Jevremović, I.; Chen, Y.-H.; Altin, A.; Erbe, A.: Mechanisms of Inhibitor Action: Passivation and Self-Healing. In: Corrosion Inhibitors in the Oil and Gas Industries, Vol. Part 2, (Chapter 15), pp. 359 - 382 (Eds. Saji, V. S.; Umoren, S. A.). Wiley-VCH, Weinheim, Germany (2020)
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.