Schmidt, W. G.; Wippermann, S. M.; Rauls, E.; Gerstmann, U.; Sanna, S.; Thierfelder, C.; Landmann, M.; dos Santos, L. S.: Si(111)-In Nanowire Optical Response from Large-scale Ab Initio Calculations. In: High Performance Computing in Science and Engineering 2010, pp. 149 - 158. 14th Annual Results and Review Workshop on High Performance Computing in Science and Engineering, Stuttgart University, Stuttgart, Germany, October 04, 2010 - October 05, 2010. Springer-Verlag Berlin, Berlin, Germany (2011)
Schmidt, W. G.; Blankenburg, S.; Rauls, E.; Wippermann, S. M.; Gerstmann, U.; Sanna, S.; Thierfelder, C.; Koch, N.; Landmann, M.: Understanding Long-range Indirect Interactions Between Surface Adsorbed Molecules. In: High Performance Computing in Science and Engineering 2009, pp. 75 - 84. 12th Results and Review Workshop on High Performance Computing in
Science and Engineering, Stuttgart University , Stuttgart, Germany, October 08, 2009 - October 09, 2009. (2010)
Wippermann, S. M.; Schmidt, W. G.; Thissen, P.; Grundmeier, G.: Dissociative and molecular adsorption of water on alpha-Al2O3(0001). In: Physica Status Solidi C, Vol. 7, pp. 137 - 140. 12th International Conference on Formation of Semiconductor Interfaces, Weimar, Germany, July 05, 2009 - July 10, 2009. Wiley-VCH, Weinheim (2010)
Schmidt, W. G.; Blankenburg, S.; Wippermann, S. M.; Hermann, A. M.; Hahn, P.; Preuss, M.; Seino, K.; Bechstedt, F.: Anomalous water optical absorption: Large-scale first-principles simulations. In: High Performance Computing in Science and Engineering '06, pp. 49 - 58. 9th Results and Review Workshop on High Performance Computing in Science and Engineering, Stuttgart University, Stuttgart, Germany, October 19, 2006 - October 20, 2006. (2007)
Wippermann, S. M.; Schmidt, W. G.; Oh, D. M.; Yeom, H. W.: Impurity-mediated early condensation of an atomic layer electronic crystal: oxygen-adsorbed In/Si(111)-(4×1)/(8×2). DPG Spring Meeting 2015, Berlin, Germany (2015)
Wippermann, S. M.; Schmidt, W. G.: In/Si(111)-(4×1)/(8×2): a fascinating model system for one-dimensional conductors. DPG March Meeting 2014, Berlin, Germany (2014)
Wippermann, S. M.; Schmidt, W. G.: In/Si(111)-(4x1)/(8x2): A fascinating model system for one-dimensional conductors. DPG Spring Meeting, Dresden, Germany (2014)
Wippermann, S. M.; Oh, D. M.; Yeom, H. W.; Schmidt, W. G.: Oxygen adsorption on the In/Si(111) nanowire array: structure and influence on metal insulator transition. DPG Spring Meeting, Dresden, Germany (2014)
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
In this project we pursue recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system.
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…
In this project, we work on the use of a combinatorial experimental approach to design advanced multicomponent multi-functional alloys with rapid alloy prototyping. We use rapid alloy prototyping to investigate five multicomponent Invar alloys with 5 at.% addition of Al, Cr, Cu, Mn and Si to a super Invar alloy (Fe63Ni32Co5; at.%), respectively…