Kini, M. K.; Nandy, S.; Best, J. P.; Dehm, G.: Deformation of CoCrFeNi alloy thin films under thermal fatigue. International Conference on Creep and Fracture of Engineering Materials and Structures CREEP 2024, Bangalore, India (2024)
Kanjilal, A.; Best, J. P.; Dehm, G.: Using in-situ nano- and micromechanical testing to probe the fracture behavior of intermetallic Laves phase materials. 7th International Indentation Workshop – IIW7, Hyderabad, India (2023)
Dehm, G.: Resolving the interplay of structure and energy landscapes of tilt grain boundaries in metals. 3rd ELSICS Conference and Bunsen-Colloquium “Energy Landscapes and Structure in Ion Conducting Solids (ELSICS)”, Ulm, Germany (2023)
Dehm, G.; Liebscher, C.: In situ TEM study of deformation and phase transformation mechanisms in chemically complex alloys. Symposium In-situ & Environmental Microscopy, 20th International Microscopy Congress, Busan, Korea (2023)
Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Role of temperature on micromechanical fracture behaviour of Laves phase in Mg–Al–Ca ternary alloy. FEMS EUROMAT 2023, Frankfurt, Germany (2023)
Kanjilal, A.; Rehman, U.; Best, J. P.; Dehm, G.: Role of temperature on micromechanical fracture behavior of Laves phase in Mg–Al–Ca ternary alloy. FEMS Euromat 2023, Frankfurt am Main, Germany (2023)
Brink, T.; Langenohl, L.; Ahmad, S.; Liebscher, C.; Dehm, G.: Atomistic Modeling of the Thermodynamics of Grain Boundaries in fcc Metals. 19th International Conference on Diffusion in Solids and Liquids, Crete, Greece (2023)
Dehm, G.: Grain boundary phases in metallic materials: Structure, stability and properties. MiFuN III - Microstructural Functionality at the Nanoscale, Venice, Italy (2023)
Dehm, G.: On the interplay between grain boundary complexions and chemical composition for fcc metals. Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2023, Bernkastel-Kues, Germany (2023)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.