Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Influence of long-range C-C elastic interactions on the structural stability of dilute Fe-C solid solutions. Invited Talk at ICAMS, Bochum, Germany (2009)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: A multiscale study of the Hydrogen enhanced local plasticity (HELP) mechanism. Asia Steel Conference 2009, Busan, South Korea (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Multi-scale modeling of the phase stability of interstitial Fe-C solid solutions. Invited talk at MPI for Metal Research, Stuttgart, Germany (2009)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: A multiscale study of the Hydrogen-enhanced local plasticity mechanism (HELP). Fruehjahrstagung der Deutschen Physikalischen Gesellschaft 2009, Dresden, Germany (2009)
von Pezold, J.; Lymperakis, L.; Neugebauer, J.: A multiscale study of hydrogen embrittlement in metals: Revisitting the Hydrogen-enhanced local plasticity mechanism. APS March Meeting, Pittsburgh, PA, USA (2009)
von Pezold, J.: Ab initio based approaches to failure mechanisms in steels: Application to hydrogen embrittlement. Materialphysikalisches Seminar, Georg August Universitaet Goettingen (2008)
Udyansky, A.; Bugaev, V.; von Pezold, J.; Friák, M.; Neugebauer, J.: Modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution using embedded atom method potential. Contemporary Problems of Metal Physics, Kiev, Ukraine (2008)
von Pezold, J.; Neugebauer, J.: Hydrogen-enhanced local plasticity - An atomistic study. Materials Science and Engineering 2008, Nuernberg, Germany (2008)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution. Computational Materials Science Workshop, Ebernburg Castle, Germany (2008)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Atomistic modeling of the strain-induced interaction between carbon atoms in Fe-C solid solution. XVII International Materials Research Congress 2008, Cancun, Mexico (2008)
von Pezold, J.; Neugebauer, J.: Hydrogen enhanced local plasticity - An atomistic study. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Nematollahi, A.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Thermodynamic and kinetic effects of elastic strain on the decomposition of cementite in wire-draw pearlitic steel. International scientific seminar: Ab-initio description of iron and steel thermodynamics and kinetics, Ringberg Castle, Tegernsee, Germany (2012)
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.