Gross, M.; Krüger, T.; Varnik, F.: Rheology of dense suspensions of elastic capsules: Normal stresses, yield stress, jamming and confinement effects. Soft Matter 10 (24), pp. 4360 - 4372 (2014)
Krüger, T.; Gross, M.; Raabe, D.; Varnik, F.: Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells. Soft Matter 9 (37), pp. 9008 - 9015 (2013)
Krüger, T.; Varnik, F.; Raabe, D.: Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Computers & Mathematics with Applications 61 (12), pp. 3485 - 3505 (2011)
Krüger, T.; Varnik, F.; Raabe, D.: Particle stress in suspensions of soft objects. Philosophical Transactions of the Royal Society A 369, pp. 2414 - 2421 (2011)
Krüger, T.; Varnik, F.; Raabe, D.: Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method. Physical Review E 82 (025701) (2010)
Krüger, T.: Computer simulation study of collective phenomena in dense suspensions of red blood cells under shear. Springer Spektrum, Heidelberg (2012), 165 pp.
Schiffels, P.; Amkreutz, M.; Blumenau, A. T.; Krüger, T.; Schneider, B.; Frauenheim, T.; Hennemann, O.-D.: Modeling Fundamental Aspects of the Surface Chemistry of Oxides and their Interactions with Coupling Agents. In: Adhesion: Current Research and Applications, pp. 17 - 32 (Ed. Possart, W.). Wiley – VCH, Weinheim (2005)
Krüger, T.: Microscopic behavior of dense red blood cell suspensions in shear flow: A hybrid lattice Boltzmann finite element simulation study. Discrete Simulation of Fluid Dynamics 2011, Fargo, ND, USA (2011)
Krüger, T.: Particle-resolved simulation of blood in simple shear flow: Shear-thinning behavior and its microscopic origin(s). Institut für Festkörperforschung, FZ Jülich, Jülich, Germany (2011)
Krüger, T.: Hybrid LB-FEM modeling of dense suspensions of deformable particles under shear. SFB TR6 Seminar, Institut für Theoretische Physik II, HHU Düsseldorf, Germany (2011)
Krüger, T.: Mesoscopic modeling of red blood cell dynamics. Oberseminar: Theorie komplexer Systeme WS 2010, Institut für Theoretische Physik, Universität Heidelberg, Germany (2010)
Krüger, T.: Mesoscopic Modeling of the dynamics of red blood cells. Seminar talk at Ruhr-Universität Bochum, Lehrstuhl für Biophysik, Bochum, Germany (2010)
Krüger, T.: Analyzing blood properties by simulating suspensions of deformable particles: Shear stress and viscosity behavior. ICAMS Scientific Retreat, Akademie Biggesee, Attendorn (2010)
Krüger, T.: Simulation of a dense suspension of red blood cells. TU Braunschweig, Institut für rechnergestützte Modellierung im Bauingenieurwesen, Braunschweig, Germany (2010)
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…
In this project, we work on the use of a combinatorial experimental approach to design advanced multicomponent multi-functional alloys with rapid alloy prototyping. We use rapid alloy prototyping to investigate five multicomponent Invar alloys with 5 at.% addition of Al, Cr, Cu, Mn and Si to a super Invar alloy (Fe63Ni32Co5; at.%), respectively…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
In this project we pursue recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system.