Varnik, F.: Complex rheology of a simple model glass: Shear thinning, dynamic versus static yielding and flow heterogeneity. Institut für theoretische Physik, University of Düsseldorf, Germany (2005)
Varnik, F.: Stress fluctuations, static yield stress and shear banding in a flowing Lennard-Jones glass. SPIE conference on Fluctuation and Noise in Materials, Maspalomas, Gran Canaria, Spain (2004)
Varnik, F.: The static yield stress and flow heterogeneity in a model glass: A molecular dynamics study. International workshop on dynamics in viscous liquids, München, Germany (2004)
Varnik, F.: Etude par dynamique moléculaire de l’écoulement dans les systèmes amorphes. Laboratoire de Physique de la Matière Condensée, Université Claude Bernard Lyon 1, Lyon, France (2004)
Varnik, F.: Yield stress and shear banding in a flowing Lennard-Jones glass: A molecular dynamics study. Seminar talk at Laboratoire de Physico-Chimie Théorique, ESPCI, Paris, France (2003)
Varnik, F.: Rhéologie non-linéaire d’un modèle simple: La bande de cisaillement et la dynamique locale. Deuxième Journée de Modélisation Moléculaire des Polymères et des Matériaux Amorphes, Université Paris Sud, Orsay, France (2003)
Varnik, F.: Confinement effects on the slow dynamics of a supercooled polymer melt: Rouse modes and the incoherent scattering function. 2nd International Workshop on Dynamics in Confinement, Grenoble, France (2003)
Varnik, F.: Résultats de simulations de dynamique moléculaire sur la dynamique vitreuse d’un système de polymères. Seminar at Laboratoire de Chimie-Physique, Université Paris Sud, Orsay, France (2001)
Varnik, F.: Effects of the confinement on the glass transition in thin polymer films. 28th International Conference on Dynamical Properties of Solids (DYPROSO XXVIII), Kerkrade, The Netherlands (2001)
Varnik, F.: Measurements of moments for diffracted laser beams: Comparison with theory. 4-th International Conference on Laser Beam and Optics Characterization (LBOC), München, Germany (1997)
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
The worldwide developments of electric vehicles, as well as large-scale or grid-scale energy storage to compensate the intermittent nature of renewable energy generation has generated a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…