Choi, P.: Characterization of CuInSe2 and CuInGaSe2 thin-film solar cells using Atom Probe Tomography. International Conference on Electronic Materials and Nanotechnology for Green Environemnt, Jeju Island, South Korea (2010)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Dmitrieva, O.; Choi, P.; Ponge, D.; Raabe, D.; Gerstl, S. S. A.: Laser-pulsed atom probe studies of a complex maraging steel: Laser pulse energy variation and precipitate analysis. 52nd International Field Emission Symposium IFES 2010, Sydney, Australia (2010)
Li, Y. J.; Choi, P.; Borchers, C.; Chen, Y.Z.; Goto, S.; Raabe, D.; Kirchheim, R.: Atom Probe Tomography characterization of heavily cold drawn pearlitic steel wire. 52nd International Field Emission Symposium (IFES), Sydney, Australia (2010)
Raabe, D.; Li, Y. J.; Choi, P.; Sauvage, X.; Kirchheim, R.; Hono, K.: Atomic-scale mechanisms in mechanical alloying - Towards the limits of strength in ductile nano-structured bulk materials. International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM) 2010, ETH Zürich, Switzerland (2010)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells. 15th GLADD meeting 2010, Delft, The Netherlands (2010)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Liu, T.; Raabe, D.: Characterization of CuInSe2 and Cu(In,Ga)Se2 thin-film solar cells using Atom Probe Tomography. Zentrum für Sonnenenergie und Wasserstoffforschung (ZSW), Stuttgart, Germany (2010)
Jun, H.; Choi, P.-P.; Li, Z.; Raabe, D.: Design of dual-phase refractory multi-principle element alloys. 2nd International Conference on High-Entropy Materials (ICHEM 2018), Jeju, South Korea (2018)
Cojocaru-Mirédin, O.; Schwarz, T.; Choi, P.; Würz, R.; Raabe, D.: Characterization of Cu(In,Ga)Se2 grain boundaries using atom probe tomography. 2013 MRS Spring Meeting & Exhibit, San Francisco, CA, USA (2013)
Herbig, M.; Choi, P.; Raabe, D.: A Sample Holder System that Enables Sophisticated TEM Analysis of APT Tips. International Field Emission Symposium 2012, Tuscaloosa, AL, USA (2012)
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach…
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project we pursue recent developments in the field of austenitic steels with up to 18% reduced mass density. The alloys are based on the Fe-Mn-Al-C system.
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…
In this project, we work on the use of a combinatorial experimental approach to design advanced multicomponent multi-functional alloys with rapid alloy prototyping. We use rapid alloy prototyping to investigate five multicomponent Invar alloys with 5 at.% addition of Al, Cr, Cu, Mn and Si to a super Invar alloy (Fe63Ni32Co5; at.%), respectively…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…