Mukherjee, T.; Breitbach, B.; Meneghetti, M.; Rabe, M.: Broadening the Ambit of Raman Solvation Shell Spectroscopy on Small Particle Dispersions. Journal of Physical Chemistry C 129 (39), pp. 17892 - 17901 (2025)
Ramirez, M.; R., S.; Samiseresht, N.; Martínez-Roque, M. A.; Catania, F.; Graef, K.; Rabe, M.; Offenhäusser, A.; Mayer, D.; Figueroa-Miranda, G.: A Truncated Multi-Thiol Aptamer-Based SARS-CoV-2 Electrochemical Biosensor: Towards Variant-Specific Point-of-Care Detection with Optimized Fabrication. Biosensors 15 (1), 24 (2025)
Warden, G. K.; Ebbinghaus, P.; Rabe, M.; Juel, M.; Gaweł, B. A.; Erbe, A.; Di Sabatino, M.: Investigation of uniformity in fused quartz crucibles for Czochralski silicon ingots. Journal of Crystal Growth 645, 127844 (2024)
Zhong, X.; Schulz, M.; Wu, C.-H.; Rabe, M.; Erbe, A.; Rohwerder, M.: Limiting Current Density of Oxygen Reduction under Ultrathin Electrolyte Layers: From the Micrometer Range to Monolayers. ChemElectroChem 8 (4), pp. 712 - 718 (2021)
Rabe, M.; Kerth, A.; Blume, A.; Garidel, P.: Albumin displacement at the air-water interface by Tween (Polysorbate) surfactants. European Biophysics Journal with Biophysics Letters 49, pp. 533 - 547 (2020)
Rabe, M.: Spectram: A MATLAB® and GNU octave toolbox for transition model guided deconvolution of dynamic spectroscopic data. Journal of Open Research Software 8, 13 (2020)
Rabe, M.; Toparli, C.; Chen, Y.-H.; Kasian, O.; Mayrhofer, K. J. J.; Erbe, A.: Alkaline manganese electrochemistry studied by in situ and operando spectroscopic methods - metal dissolution, oxide formation and oxygen evolution. Physical Chemistry Chemical Physics 21 (20), pp. 10457 - 10469 (2019)
Daudey, G. A.; Schwieger, C.; Rabe, M.; Kros, A.: Influence of Membrane–Fusogen Distance on the Secondary Structure of Fusogenic Coiled Coil Peptides. Langmuir 35 (16), pp. 5501 - 5508 (2019)
Uebel, M.; Exbrayat, L.; Rabe, M.; Tran, T. H.; Crespy, D.; Rohwerder, M.: On the Role of Trigger Signal Spreading Velocity for Efficient Self-Healing Coatings for Corrosion Protection. Journal of the Electrochemical Society 165 (16), pp. C1017 - C1027 (2018)
Niu, F.; Rabe, M.; Nayak, S.; Erbe, A.: Vibrational spectroscopic study of pH dependent solvation at a Ge(100)-water interface during an electrode potential triggered surface termination transition. The Journal of Chemical Physics 148, 222824 (2018)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.