Brinckmann, S.: Friction and wear of austenite steel: plasticity and crack formation. 71st Annual Meeting & Exhibition of the Society of Tribologists and Lubrication Engineers (STLE 2016), Las Vegas, NV, USA (2016)
Duarte, M. J.; Brinckmann, S.; Renner, F. U.; Dehm, G.: Nanomechanical testing under environmental conditins of Fe-based metallic glasses. 22st International Symposium on Metastable Amorphous and Nanostructured Materials, ISMANAM 2015, Paris, France (2015)
Brinckmann, S.: Nanotribology and crack initiation. Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Stuttgart, Germany (2015)
Fink, C.; Brinckmann, S.; Shin, S.; Dehm, G.: Nanotribology and Microstructure Evolution in Pearlite. Frühjahrstagung der Sektion Kondensierte Materie der Deutschen Physikalischen Gesellschaft
, Berlin, Germany (2015)
Brinckmann, S.; Fink, C.; Dehm, G.: Roughness and Microstructure Development during Nanotribology in Austenite. DPG-Spring Meeting, Berlin, Germany (2015)
Brinckmann, S.: Shear deformation in FCC metals: Fundametal and applied research. Seminar at Institute of Materials Physics, Georg-August-Universität Göttingen, Göttingen, Germany (2014)
Brinckmann, S.: Nanotribology mechanisms due to microcontacts in Austenite. 3rd European Symposium on Friction, Wear and Wear Protection, Karlsruhe, Germany (2014)
Brinckmann, S.: Combining Atomistic and Dislocation Dynamics into a Concurrent Multiscale Model. Seminar zur Physik der kondensierten Materie, Institut für Theoretische und Angewandte Physik, Universität Stuttgart, Stuttgart, Germany (2013)
Brinckmann, S.: Deformation localization and strain hardening during micro shear experiments on gold in the SEM. Nanomechanical Testing in Materials Research and Development IV, Olhão (Algarve), Portugal (2013)
Brinckmann, S.: Joining 3D Dislocation Dynamics and 3D Molecular Dynamics into a Concurrent Multiscale Model. SES 50th Annual Technical Meeting and ASME-AMD Annual Summer Meeting, Providence, RI, USA (2013)
Brinckmann, S.: Discrete Disclination Dynamics in comparison to Discrete Dislocation Dynamics. SES 50th Annual Technical Meeting and ASME-AMD Annual Summer Meeting, Providence, RI, USA (2013)
Brinckmann, S.: Studying very short cracks with a 3D multiscale model. DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM), Regensburg, Germany (2013)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.