Godara, A.; Raabe, D.: Influence of sterilization on the microscopic strain localization in carbon fiber reinforced PEEK composites for bone-implant applications investigated by digital image correlation. MRS Fall Meeting, Boston, MA, USA (2006)
Raabe, D.: Neues aus der Eisenzeit - Simulationen und Experimente in der Kristallmechanik und frischer Hummer. Lise-Meitner-Kolloquium, Hahn-Meitner-Institut (HMI), Berlin, Germany (2005)
Raabe, D.: Integrative Werkstoffmodellierung. Finalizing Conference of Sonderforschungsbereich SFB 370, together with an international Konferenz “Integral Materials Modeling”, Aachen, Germany (2005)
Sachs, C.; Fabritius, H.; Romano, P.; Raabe, D.: Viscoelastic Behavior of Lobster Cuticle as a Function of Mineralization Grade. MRS Fall Meeting, Boston, MA, USA (2005)
Fabritius, H.; Romano, P.; Sachs, C.; Al-Sawalmih, A.; Raabe, D.: Arthropod cuticle as an example for bio-composite materials with a strong hierarchical order from the nano- to the macro-level of organization. MRS Fall Meeting, Boston, MA, USA (2005)
Ponge, D.; Song, R.; Ardehali Barani, A.; Raabe, D.: Thermomechanical Processing Research at the Max Planck Institute for Iron Research. FORTY FIRST SEMIANNUAL TECHNICAL PROGRAM REVIEW, Golden, CO, Colorado School of Mines, Advanced Steel Processing and Products Research Center (2005)
Ma, A.; Roters, F.; Raabe, D.: A dislocation density based constitutive law for BCC materials in crystal plasticity FEM. 15th International Workshop on Computational Mechanics of Materials, MPI für Eisenforschung, Düsseldorf (2005)
Raabe, D.; Godara, A.: Published in conference proceedings: Strain localization and microstructure evolution during plastic deformation of fiber reinforced polymer composites. International Workshop on Thermoplastic Matrix Composites (THEPLAC 2005), Lecce, Italy (2005)
Varnik, F.; Raabe, D.: Lattice Boltzmann studies of flow instability in microchannels: The role of the surface roughness/topology. Laboratoire de Physique et de la Matiere Condensee et Nanostructure, Universite Claude Bernard, Lyon1, France (2005)
Dorner, D.; Lahn, L.; Zaefferer, S.; Raabe, D.: Fundamental Research on Microstructure and Microtexture Development in Grain-oriented Silicon Steel: The Evolution of the Goss orientation. 17th Soft Magnetic Materials Conference (SMM17), Bratislava, Slovakia (2005)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The structure of grain boundaries (GBs) is dependent on the crystallographic structure of the material, orientation of the neighbouring grains, composition of material and temperature. The abovementioned conditions set a specific structure of the GB which dictates several properties of the materials, e.g. mechanical behaviour, diffusion, and…
The goal of this project is to develop an environmental chamber for mechanical testing setups, which will enable mechanical metrology of different microarchitectures such as micropillars and microlattices, as a function of temperature, humidity and gaseous environment.
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
The computational materials design department in collaboration with the Technical University Darmstadt and the Ruhr University Bochum developed a workflow to calculate phase diagrams from ab-initio. This achievement is based on the expertise in the ab-initio thermodynamics in combination with the recent advancements in machine-learned interatomic…
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM).
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.