Choi, P.; Cojocaru-Mirédin, O.; Wuerz, R.: Compositional gradients and impurity distributions in CuInSe2 thin-film solar cells studied by atom probe tomography. Surface and Interface Analysis 44 (11-12), pp. 1386 - 1388 (2012)
Tytko, D.; Choi, P.-P.; Klöwer, J.; Inden, G.; Raabe, D.: Microstructural evolution of a Ni-based superalloy (617B) at 700 °C studied by electron microscopy and atom probe tomography. Acta Materialia 60 (4), pp. 1731 - 1740 (2012)
Marquis, E. A.; Choi, P.; Danoix, F.; Kruska, K.; Lozano-Perez, S.; Raabe, D.; Williams, C. A.: New insights into the atomic-scale structures and behavior of steels. Microscopy Today 20, pp. 44 - 48 (2012)
Seol, J.-B.; Raabe, D.; Choi, P.; Im, Y. R.; Park, C. G.: Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic–austenitic TRIP steels. Acta Materialia 60, pp. 6183 - 6199 (2012)
Choi, P.; Cojocaru-Mirédin, O.; Würz, R.; Raabe, D.: Comparative atom probe study of Cu(In,Ga)Se2 thin-film solar cells deposited on soda-lime glass and mild steel substrates. Journal of Applied Physics 110 (12), 124513 (7pp) (2011)
Cojocaru-Mirédin, O.; Choi, P.; Abou-Ras, D.; Schmidt, S. S.; Caballero, R.; Raabe, D.: Characterization of grain boundaries in Cu(In,Ga)Se2 films using atom probe tomography. Journal of Photovoltaics 1, pp. 207 - 212 (2011)
Cojocaru-Mirédin, O.; Choi, P.; Wuerz, R.; Raabe, D.: Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells. Ultramicroscopy 111 (6), pp. 552 - 556 (2011)
Dmitrieva, O.; Ponge, D.; Inden, G.; Millán, J.; Choi, P.; Sietsma, J.; Raabe, D.: Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation. Acta Materialia 59 (1), pp. 364 - 374 (2011)
Millán, J.; Ponge, D.; Raabe, D.; Choi, P.; Dmitrieva, O.: Characterization of Nano-Sized Precipitates in a Mn-Based Lean Maraging Steel by Atom Probe Tomography. Steel Research Int. 82, pp. 137 - 145 (2011)
Peng, Z.; Gault, B.; Raabe, D.; Ashton, M. W.; Sinnott, S. B.; Choi, P.-P.; Li, Y.: On the Multiple Event Detection in Atom Probe Tomography. In: MicroscopyMicroanalysis, Vol. 23, pp. 618 - 619. Microscopy & Microanalysis 2017, St. Louis, MO, USA, August 06, 2017 - August 10, 2017. (2017)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
Electron microscopes offer unique capabilities to probe materials with extremely high spatial resolution. Recent advancements in in situ platforms and electron detectors have opened novel pathways to explore local properties and the dynamic behaviour of materials.