Dick, A.; Körmann, F.; Abbasi, A.; Hickel, T.; Neugebauer, J.: Towards an ab initio based understanding of deformation mechanisms in high-manganese Steels. 1st Int. Conf. on High Manganese Steels, Seoul, South Korea (2011)
Zhu, L.-F.; Friák, M.; Dick, A.; Udyansky, A.; Neugebauer, J.: First principles study of elastic properties of eutectic Ti-Fe alloys up to their mechanical stability limits. DPG Spring Meeting 2011, Dresden, Germany (2011)
Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Pei, Z.; Neugebauer, J.; Raabe, D.: Combining ab initio calculations and high-resolution experiments to understand advanced Mg alloys. German-Korean workshop on the “Production and industrial applications of semi-finished Mg products”, Irsee, Germany (2011)
Dick, A.: Towards an ab initio based understanding of deformation mechanisms in high-manganese steels. International scientific seminar “Ab initio Description of Iron and Steel: Mechanical properties”, Ringberg, Germany (2010)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: Integrating finite temperature magnetism into ab initio free energy calculations. ICAMS Scientific Retreat, Akademie Biggesee, Attendorn, Germany (2010)
Friák, M.; Zhu, L.-F.; Dick, A.; Hickel, T.; Neugebauer, J.: First-principles study of the Ti-Fe eutectic system. Seminar at Institute of Physics of Materials at Czech Academy of Sciences, Brno, Czech Republic (2010)
Dick, A.; Hickel, T.; Neugebauer, J.: Ab Initio Interfacial Austenite/Martensite Energies for Accurate Deformation Mechanism Maps in High-Mn Steels. Materials Science and Engineering 2010, Darmstadt, Germany (2010)
Hickel, T.; Körmann, F.; Dick, A.; Neugebauer, J.: The thermodynamics of Fe-based compounds derived from first principles. Materials Science and Engineering 2010, Darmstadt, Germany (2010)
Hickel, T.; Dick, A.; Körmann, F.; Neugebauer, J.: Ab initio Bestimmung thermodynamischer Eigenschaften des Legierungssystems Fe-Mn-C. Sitzung FA Computersimulation der DGM, Aachen, Germany (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Atomistic study of martensite stability in dilute Fe-based solid solutions. PTM 2010 (Solid-Solid Phase Transformations in Inorganic Materials), Avignon, France (2010)
Körmann, F.; Dick, A.; Hickel, T.; Neugebauer, J.: First principles concepts to determine the heat capacity of Fe-based alloys. Calphad XXXIX, Jeju Island, South Korea (2010)
Udyansky, A.; von Pezold, J.; Dick, A.; Neugebauer, J.: Impurity ordering in iron: An ab initio based multi-scale approach. GraCoS Workshop (Carbon and Nitrogen in Steels: Measurement, Phase Transformations and Mechanical Properties), Rouen, France (2010)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at addressing the specific knowledge gap of experimental data on the mechanical behavior of microscale samples at ultra-short-time scales by the development of testing platforms capable of conducting quantitative micromechanical testing under extreme strain rates upto 10000/s and beyond.
Crystal plasticity modelling has gained considerable momentum in the past 20 years [1]. Developing this field from its original mean-field homogenization approach using viscoplastic constitutive hardening rules into an advanced multi-physics continuum field solution strategy requires a long-term initiative. The group “Theory and Simulation” of…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.
The project focuses on development and design of workflows, which enable advanced processing and analyses of various data obtained from different field ion emission microscope techniques such as field ion microscope (FIM), atom probe tomography (APT), electronic FIM (e-FIM) and time of flight enabled FIM (tof-FIM).
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The development of pyiron started in 2011 in the CM department to foster the implementation, rapid prototyping and application of the highly advanced fully ab initio simulation techniques developed by the department. The pyiron platform bundles the different steps occurring in a typical simulation life cycle in a single software platform and…