Patil, P.; Lee, S.; Dehm, G.; Brinckmann, S.: Influence of crystal orientation on twinning in austenitic stainless-steel during single micro-asperity tribology and nanoindentation. WEAR 504-505, 204403 (2022)
Tsybenko, H.; Farzam, F.; Dehm, G.; Brinckmann, S.: Scratch hardness at a small scale: Experimental methods and correlation to nanoindentation hardness. Tribology International 163, 107168 (2021)
Duarte, M. J.; Fang, X.; Rao, J.; Krieger, W.; Brinckmann, S.; Dehm, G.: In situ nanoindentation during electrochemical hydrogen charging: a comparison between front-side and a novel back-side charging approach. Journal of Materials Science 56 (14), pp. 8732 - 8744 (2021)
Ebner, A. S.; Brinckmann, S.; Plesiutschnig, E.; Clemens, H.; Pippan, R.; Maier-Kiener, V.: A Modified Electrochemical Nanoindentation Setup for Probing Hydrogen-Material Interaction Demonstrated on a Nickel-Based Alloy. JOM-Journal of the Minerals Metals & Materials Society 72 (5), pp. 2020 - 2029 (2020)
Brinckmann, S.: A framework for material calibration and deformation predictions applied to additive manufacturing of metals. International Journal of Fracture 218, pp. 85 - 95 (2019)
Brinckmann, S.: The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal. International Journal of Fracture 218 (1-2), pp. 5 - 61 (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.