Valtiner, M.; Grundmeier, G.: Towards a deeper understanding of molecular adhesion mechanisms by a combined approach of single molecule adhesion and DFT studies. 23. Workshop “Novel Materials and Superconductors”, Universitätssportheim Planneralm, Donnersbach, Austria (2008)
Valtiner, M.; Grundmeier, G.: Molecular Adhesion Mechanisms on Single Crystalline, Hydroxide Stabilized ZnO(0001) Surfaces. MRS fall meeting 2007, Boston, MA, USA (2007)
Valtiner, M.; Grundmeier, G.: Towards a better understanding of adhesion by a combined approach of single molecule adhesion and DFT studies. ECASIA 07, Brussels, Belgium (2007)
Todorova, M.; Valtiner, M.; Neugebauer, J.: Stabilisation of polar ZnO(0001) surfaces in dry and humid environment. FIESTAE - Frontiers in Interface Science: Theory and Experiment, Berlin, Germany (2011)
Todorova, M.; Valtiner, M.; Grundmeier, G.; Neugebauer, J.: Temperature Stabilised surface reconstructions at polar ZnO(0001). Gordon Research Seminar ''Corrosion - Aqueous'', Colby-Sawyer College, New London, NH, USA (2010)
Keil, P.; Valtiner, M.; Grundmeier, G.: In-situ XAS investigations of the ZnO(0001)–Zn surface and electrolyte interface during dissolution and as a function of pH. Gordon Research Conference, Science of Adhesion, Colby-Sawyer College, New London, NH, USA (2009)
Grundmeier, G.; Valtiner, M.: Nanoscopic understanding of the surface chemistry and stability of polar ZnO(0001)-Zn surfaces in aqueous solutions. The 59th Annual Meeting of the International Society of Electrochemistry, Seville, Spain (2008)
Valtiner, M.; Grundmeier, G.: Acidic dissolution mechanism, pH-dependent stability and adhesion of single molecules studied on single crystalline ZnO(0001)–Zn model surfaces by in-situ AFM studies. Gordon Conference Graduate Research Seminar on Aqueous Corrosion, Colby Sawyer College, New London, NH, USA (2008)
Valtiner, M.; Grundmeier, G.: Acidic dissolution mechanism, pH-dependent stabilization and adhesion of single molecules on single crystalline ZnO(0001)–Zn model surfaces studied by in-situ AFM and DFT simulation. PSI-k Summerschool for Modern Concepts for Creating and Analyzing Surfaces and Nanoscale Materials, Sant Feliu de Guixols, Spain (2008)
Valtiner, M.; Grundmeier, G.: Study of Molecular Adhesion on ZnO(0001) by means of Single Molecule Adhesion Studies. 15th WIEN2k workshop, Vienna, Austria (2008)
Valtiner, M.; Keil, P.; Grundmeier, G.: The structure of the ZnO(0001)-Zn surface and interface during acidic dissolution. HASYLAB users' meeting 2007 "Research with Synchrotron Radiation and FELs, Hamburg, Germany (2007)
Valtiner, M.: Non-linear optics. Lecture: Specialized class on “Non-linear optics”, RUB (substituted for Prof. K. Morgenstern), SS 2014, Bochum, Germany, April 01, 2014 - September 30, 2014
Erbe, A.; Valtiner, M.; Muhler, M.; Mayrhofer, K. J. J.; Rohwerder, M.: Physical chemistry of surfaces and interfaces. Lecture: Course for PhD students of the IMPRS Surmat, Ruhr-Universität Bochum, Bochum, Germany, October 01, 2013 - October 31, 2013
Hu, Q.: A Contribution to Elucidate Interfacial Electric Double Layer Structures and Their Effects on Tribological Phenomena Using Force Microscopy. Dissertation, Fakultät für Maschinenbau der Ruhr-Universität Bochum, Bochum, Germany (2018)
Utzig, T.: A contribution to understanding interfacial adhesion based on molecular level knowledge. Dissertation, Fakultät für Maschinenbau, Ruhr-Universität Bochum, Bochum, Germany (2016)
Valtiner, M.; Grundmeier, G.: Atomistic Understanding of Structure, Stability and Adhesion at ZnO/Electrolyte Interfaces. Dissertation, Technische Universität Wien, Fakultät der technischen Chemie, Wien, Austria (2008)
Möllmann, V.; Keil, P.; Valtiner, M.; Wagner, R.; Lützenkirchen-Hecht, D.; Frahm, R.; Grundmeier, G.: Structural properties of Ag@TiO2 nanocomposites measured by means of refection mode XAS measurements at beamline 8. (2008)
Valtiner, M.; Keil, P.; Grundmeier, G.: In-situ reflection mode XAS measurements of non equilibrium dissolution processes in aqueous electrolytes at beamline E2. (2007)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
The development of pyiron started in 2011 in the CM department to foster the implementation, rapid prototyping and application of the highly advanced fully ab initio simulation techniques developed by the department. The pyiron platform bundles the different steps occurring in a typical simulation life cycle in a single software platform and…
This work led so far to several high impact publications: for the first time nanobeam diffraction (NBD) orientation mapping was used on atom probe tips, thereby enabling the high throughput characterization of grain boundary segregation as well as the crystallographic identification of phases.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The prediction of materials properties with ab initio based methods is a highly successful strategy in materials science. While the working horse density functional theory (DFT) was originally designed to describe the performance of materials in the ground state, the extension of these methods to finite temperatures has seen remarkable…
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.