Auinger, M.; Vogel, D.; Vogel, A.; Spiegel, M.; Rohwerder, M.: A novel laboratory set-up for investigating surface and interface reactions during short term annealing cycles at high temperatures. Review of Scientific Instruments 84, 085108 (2013)
Urriola, P. V.; Walczak, M.; Rohwerder, M.: Theoretical Efficiency of Metallic Dispersion Coatings for Corrosion Protection at the Cut-Edge. Journal of the Electrochemical Society 160 (8), pp. C305 - C315 (2013)
Evers, S.; Senöz, C.; Rohwerder, M.: Hydrogen detection in metals: A review and introduction of a Kelvin probe approach. Science and Technology of Advanced Materials 14 (1), 014201 (2013)
Koelsch, P.; Muglali, M. I.; Rohwerder, M.; Erbe, A.: Third-order effects in resonant sum-frequency-generation signals at electrified metal/liquid interfaces. Journal of the Optical Society of America B-Optical Physics 30 (1), pp. 219 - 223 (2013)
Khan, T. R.; Vimalanandan, A.; Marlow, F.; Erbe, A.; Rohwerder, M.: Existence of a lower critical radius for incorporation of silica particles into zinc during electro-codeposition. ACS Applied Materials and Interfaces 4 (11), pp. 6221 - 6227 (2012)
Maljusch, A.; Senöz, C.; Rohwerder, M.; Schuhmann, W.: Combined high resolution scanning Kelvin probe - Scanning electrochemical microscopy investigations for the visualization of local corrosion processes. Electrochimica Acta 82, pp. 339 - 348 (2012)
Evers, S.; Rohwerder, M.: The hydrogen electrode in the “dry”: A Kelvin probe approach to measuring hydrogen in metals. Electrochemistry Communications 24, pp. 85 - 88 (2012)
Muglali, M. I.; Bashir, A.; Birkner, A.; Rohwerder, M.: Hydrogen as an optimum reducing agent for metallization of self-assembled monolayers. Journal of Materials Chemistry 22 (29), pp. 14337 - 14340 (2012)
Azzam, W.; Bashir, A.; Biedermann, P. U.; Rohwerder, M.: Formation of highly ordered and orientated gold islands: Effect of immersion time on the molecular adlayer structure of pentafluorobenzenethiols (PFBT) SAMs on Au(111). Langmuir 28 (27), pp. 10192 - 10208 (2012)
Senöz, C.; Borodin, S.; Stratmann, M.; Rohwerder, M.: In-situ detection of differences in the electrochemical activity of Al2Cu IMPs and investigation of their effect on FFC by scanning Kelvin probe force microscopy. Corrosion Science 58, pp. 307 - 314 (2012)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances