Salgin, B.; Hamou, F. R.; Rohwerder, M.: Monitoring surface ion mobility on aluminum oxide: Effect of chemical pretreatments. Electrochimica Acta 110, pp. 526 - 533 (2013)
Lv, L.-P.; Zhao, Y.; Vilbrandt, N.; Gallei, M.; Vimalanandan, A.; Rohwerder, M.; Landfester, K.; Crespy, D.: Redox responsive release of hydrophobic self-healing agents from polyaniline capsules. Journal of the American Chemical Society 135 (38), pp. 14198 - 14205 (2013)
Auinger, M.; Vogel, D.; Vogel, A.; Spiegel, M.; Rohwerder, M.: A novel laboratory set-up for investigating surface and interface reactions during short term annealing cycles at high temperatures. Review of Scientific Instruments 84, 085108 (2013)
Urriola, P. V.; Walczak, M.; Rohwerder, M.: Theoretical Efficiency of Metallic Dispersion Coatings for Corrosion Protection at the Cut-Edge. Journal of the Electrochemical Society 160 (8), pp. C305 - C315 (2013)
Evers, S.; Senöz, C.; Rohwerder, M.: Hydrogen detection in metals: A review and introduction of a Kelvin probe approach. Science and Technology of Advanced Materials 14 (1), 014201 (2013)
Koelsch, P.; Muglali, M. I.; Rohwerder, M.; Erbe, A.: Third-order effects in resonant sum-frequency-generation signals at electrified metal/liquid interfaces. Journal of the Optical Society of America B-Optical Physics 30 (1), pp. 219 - 223 (2013)
Khan, T. R.; Vimalanandan, A.; Marlow, F.; Erbe, A.; Rohwerder, M.: Existence of a lower critical radius for incorporation of silica particles into zinc during electro-codeposition. ACS Applied Materials and Interfaces 4 (11), pp. 6221 - 6227 (2012)
Maljusch, A.; Senöz, C.; Rohwerder, M.; Schuhmann, W.: Combined high resolution scanning Kelvin probe - Scanning electrochemical microscopy investigations for the visualization of local corrosion processes. Electrochimica Acta 82, pp. 339 - 348 (2012)
Evers, S.; Rohwerder, M.: The hydrogen electrode in the “dry”: A Kelvin probe approach to measuring hydrogen in metals. Electrochemistry Communications 24, pp. 85 - 88 (2012)
Muglali, M. I.; Bashir, A.; Birkner, A.; Rohwerder, M.: Hydrogen as an optimum reducing agent for metallization of self-assembled monolayers. Journal of Materials Chemistry 22 (29), pp. 14337 - 14340 (2012)
Azzam, W.; Bashir, A.; Biedermann, P. U.; Rohwerder, M.: Formation of highly ordered and orientated gold islands: Effect of immersion time on the molecular adlayer structure of pentafluorobenzenethiols (PFBT) SAMs on Au(111). Langmuir 28 (27), pp. 10192 - 10208 (2012)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
The field of micromechanics has seen a large progress in the past two decades, enabled by the development of instrumented nanoindentation. Consequently, diverse methodologies have been tested to extract fundamental properties of materials related to their plastic and elastic behaviour and fracture toughness. Established experimental protocols are…