Fabritius, H.-O.; Enax, J.; Wu, X.; Epple, M.; Raabe, D.: Structure-property relations in biological composite materials: An inspiration source for synthetic materials. 79th Annual Meeting of the DPG and DPG Spring Meeting 2015, Berlin, Germany (2015)
Fabritius, H.-O.: Alternative Präparationsmethoden für nichtmetallische Werkstoffe. Fachtagung Mikroskopie und Präparation (mikpräp) der Gesellschaft für Materialografie Rhein Ruhr e.V. (gmr2), Solingen, Germany (2015)
Fabritius, H.-O.: Structure-property relations in biological composite materials – The arthropod exoskeleton. Chemical Engineering and Materials Science Seminar, Michigan State University, East Lensing, MI, USA (2014)
Enax, J.; Fabritius, H.-O.; Roters, F.; Raabe, D.; Epple, M.: Synthetic dental composite materials inspired by the hierarchical organization of shark tooth enameloid. Third winter school within the DFG priority programme 1420 "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials", Potsdam, Germany (2014)
Huber, J.; Fabritius, H.-O.; Griesshaber, E.; Schmahl, W. W.; Ziegler, A. S.: Varying mechanical properties within the incisive cuticle of the terrestrial isopod Porcellio scaber resulting from region-dependent ultrastructure, elemental distribution and arrangement of calcite crystals. DGM Bio-inspired Materials: International Conference on Biological Material Science, Potsdam, Germany (2014)
Fabritius, H.-O.: Structure-property relations in biological composite materials. Seminar, Department of Earth- and Environmental Sciences, LMU Munich, München, Germany (2014)
Fabritius, H.-O.; Hennig, S.; Hild, S.; Soor, C.; Ziegler, A. S.: Influence of Near-Physiological Salines and Organic Matrix Proteins from Sternal ACC-Deposits of Porcellio scaber on CaCO3 Precipitation. 12th International Symposium on Biomineralization, Freiberg, Germany (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.