Hassel, A. W.; Seo, M.: Localised Photoelectrochemical Measurement with the Scanning Droplet Cell. Passivity and Localized Corrosion: International Symposium in Honor of Professor Norio Sato. Electrochem. Soc. Proc. PV 99-27, pp. 337 - 342 (1999)
Hassel, A. W.; Seo, M.: The Scanning Droplet Cell: Experimental Results and Determination of the Potential Distribution. Proceed. Japan Soc. Corr. Engineer. Mater. Environments 1998, pp. 293 - 296 (1998)
Hassel, A. W.: Elektronische und ionische Transportprozesse in ultradünnen Aluminiumoxidschichten. Oberflächentechnik '95, DGO Jahrestagung 33, pp. 31 - 34 (1995)
Venzlaff, H.; Enning, D.; Widdel, F.; Stratmann, M.; Hassel, A. W.: A new model for microbiologically influenced corrosion. The European Corrosion Congress Eurocorr 2010, Moscow, Russia (2010)
Mardare, A. I.; Ludwig, A.; Savan, A.; Wieck, A. D.; Hassel, A. W.: High throughput growth and in situ characterization of anodic oxides on Ti, Ta and Hf combinatorial alloys. “Electrochemistry: Crossing Boundaries”, GDCh, Gießen, Germany (2008)
Fenster, J. C.; Rohwerder, M.; Hassel, A. W.: Impedance-Titration: A Novel Method for Understanding the Kinetics of Corrosion in Aqueous Solutions. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spanien (2008)
Hassel, A. W.: Progress in the Electrochemical Processing of Directionally Solidified Eutectics. 7th International Symposium on Electrochemical Micro- and Nanosystems, Ein-Gedi, Israel (2008)
Hassel, A. W.; Milenkovic, S.; Smith, A. J.: Nanowires and Nanowire Arrays by an Electrochemical Structuring of Directionally Solidified Eutectics. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Mardare, A. I.; Wieck, A. D.; Hassel, A. W.: Combinatorial microelectrochemistry using an automated scanning droplet cell. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spanien (2008)
Stratmann, M.; Hassel, A. W.; Rohwerder, M.: Microelectrochemical Investigations of Interfaces and Surfaces of Advanced Materialks. 7th International Symposium on Electrochemical Micro- and Nanosystems, Ein-Gedi, Israel (2008)
Venzlaff, H.; Widdel, F.; Stratmann, M.; Hassel, A. W.: Microbial corrosion induced by a new highly aggressive SRB strain. 59th Annual Meeting of the International Society of Electrochemistry, Sevilla, Spain (2008)
Hassel, A. W.: Tailoring of Nanostructured Alloys by Anodisation. International Smposium on Anodizing Science and Technology 2008, Rusutsu, Japan (2008)
Mardare, A. I.; Wieck, A. D.; Hassel, A. W.: High throughput synthesis and characterization of anodic oxides on valve metal combinatorial libraries. 2nd International IMPRS-SurMat Workshop on Surface and Interface Engineering in Advanced Materials, Bochum, Germany (2008)
Chen, Y.; Milenkovic, S.; Hassel, A. W.: Fabrication of Iso-oriented Gold Nanobelt Arrays from an Fe–Au Eutectoid. 9th International Conference on Nanostructured Materials, Rio de Janerio, Brazil (2008)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…