Roters, F.; Diehl, M.; Shanthraj, P.: On the importance of using 3D microstructures in Crystal Plasticity Simulations. Symposium: 3D materials characterization at all length scales and its applications to iron and steel, Düsseldorf, Germany (2017)
Liu, C.; Diehl, M.; Shanthraj, P.; Roters, F.; Raabe, D.; Sandlöbes, S.; Dong, J.: An integrated crystal plasticity-phase field approach to locally predict twin formation in magnesium. DGM Meeting, "Herausforderungen bei der skalenübergreifenden Modellierung von Werkstoffen ", Regensburg, Germany (2017)
Roters, F.; Wong, S. L.; Shanthraj, P.; Diehl, M.; Raabe, D.: Thermo mechanically coupled simulation of high manganese TRIP/TWIP Steel. 5th International Conference on Material Modeling, ICMM 5, Rome, Italy (2017)
Diehl, M.: Deformation in polycrystals: Theory, implementation, and application of crystal plasticity. Seminar des Instituts für technische Mechanik, TU Clausthal, Clausthal, Germany (2017)
Diehl, M.; Cereceda, D.; Wong, S. L.; Reuber, J. C.; Roters, F.; Raabe, D.: From Phenomenological Descriptions to Physics-based Constitutive Models EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials. EPSRC Workshop on Multiscale Mechanics of Deformation and Failure in Materials
, Aberdeen, Scotland (2016)
Marian, J.; Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.: Unraveling the temperature dependence of the yield strength of tungsten single crystals using atomistically-informed crystal plasticity. 8th International Conference on Multiscale Materials Modeling, MMM2016, Dijon, France (2016)
Cereceda, D.; Diehl, M.; Roters, F.; Raabe, D.; Marian, J.: Unraveling the temperature dependence of the yield strength in BCC metals from atomistically-informed crystal plasticity calculation. Dislocations 2016, Purdue University, West Lafayette, IN, USA (2016)
Diehl, M.; Eisenlohr, P.; Shanthraj, P.; Roters, F.: Using the Spectral Solver. 5th International Symposium on Computational Mechanics of Polycrystals, CMCn 2016 and first DAMASK User Meeting, Düsseldorf, Germany (2016)
Diehl, M.; Naunheim, Y.; Morsdorf, L.; An, D.; Roters, F.; Raabe, D.: Crystal Plasticity Simulations on Real Data: Towards Highly Resolved 3D Microstructures. 26th International Workshop on Computational Mechanics of Materials - IWCMM 26, Tomsk, Russia (2016)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…