von Pezold, J.; Lymperakis, L.; Neugebauer, J.: A multiscale study of the Hydrogen enhanced local plasticity (HELP) mechanism. Asia Steel Conference 2009, Busan, South Korea (2009)
Dick, A.; Hickel, T.; Neugebauer, J.: First Principles Predictions of Stacking Fault Properties in FeMn Alloys. Asia Steel Conference 2009, Busan, South Korea (2009)
Neugebauer, J.: Multi-Scale Computational Materials Design of Structural Materials: First-Principles Calculations. Workshop at Pohang University of Science and Technology, Pohang, South Korea (2009)
Neugebauer, J.: Ab initio based multiscale modeling of engineering materials: From a predictive thermodynamic description to tailored mechanical properties. Asia Steel Conference, Busan, South Korea (2009)
Neugebauer, J.: Ab Initio Based Multiscale Modeling of Engineering Materials: From a Predictive Thermodynamic Description to Tailored Mechanical Properties. Colloquium at TU Bergakademie Freiberg, Freiberg, Germany (2009)
Nazarov, R.; Ismer, L.; Hickel, T.; Neugebauer, J.: Wasserstoff in X-IP Stahl (ab initio) Einfluss von Defekten auf die Energetik und Dynamik von Wasserstoff in Manganstählen. X-IP Workshop, Dortmund, Germany (2009)
Freysoldt, C.; Pfanner, G.; Neugebauer, J.: What can EPR hyperfine parameters tell about the Si dangling bond? - A theoretical viewpoint. 1st International Workshop on the Staebler-Wronski effect, Berlin, Germany (2009)
Udyansky, A.; von Pezold, J.; Friák, M.; Neugebauer, J.: Multi-scale modeling of the phase stability of interstitial Fe-C solid solutions. Invited talk at MPI for Metal Research, Stuttgart, Germany (2009)
Aydin, U.; Ismer, L.; Hickel, T.; Neugebauer, J.: Universal trends for the solubility of hydrogen in non-magnetic 3d transition metals derived from first principles. DPG Spring meeting, Dresden, Germany (2009)
Hickel, T.; Uijttewaal, M.; Neugebauer, J.: First principles determination of phase transitions in magnetic shape memory alloys. DPG Spring Meeting 2009, Dresden, Germany (2009)
Ismer, L.; Hickel, T.; Neugebauer, J.: Effect of interstitial carbon on the magnetic structure of fcc iron: Towards an ab-initio understanding of austenitic steels. DPG Spring Meeting 2009, Dresden, Germany (2009)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: The free energy of iron: Integrated ab initio derivation of vibrational, electronic, and magnetic contributions. DPG Spring Meeting 2009, Dresden, Germany (2009)
Lange, B.; Freysoldt, C.; Neugebauer, J.: Role of the parasitic Mg3N2 phase in post-growth activation of p-doped Mg:GaN. DPG Frühjahrstagung, TU Dresden, Germany (2009)
Ma, D.; Friák, M.; Raabe, D.; Neugebauer, J.: Multi-physical alloy approaches to solid solution strengthening of Al. Deutsche Physikalische Gesellschaft 2009, Dresden, Germany (2009)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Application of an eight-band k.p model to study III-nitride semiconductor. DPG Spring Meeting 2009, Dresden, Germany (2009)
Pfanner, G.; Freysoldt, C.; Neugebauer, J.: Ab-initio calculations of hyperfine parameters for various Si-dangling bond models. DPG spring meeting, TU Dresden, Germany (2009)
Todorova, M.; Ismer, L.; Neugebauer, J.: Role of anharmonic contributions for the elasticity of ice. Fruehjahrstagung der Deutschen Physikalischen Gesellschaft, Dresden, Germany (2009)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…