Zhou, X.; Wei, S.; Raabe, D.: Segregation-Driven Mechanics of White Gold at the Nanoscale: A Cursing or Blessing? Schöntal Symposium on Dislocation-based Plasticity 2024, Kloster Schöntal, Germany (2024)
Umate, K. S.; Bai, Y.; Svendsen, B.; Raabe, D.: Phase-field model for Hydrogen based direct reduction of iron oxides: Role of porosity. TMS - Algorithm Development in Materials Science and Engineering, Orlando, FL, USA (2024)
Raabe, D.: Transport and phase transformations phenomena in sustainable hydrogen-based steel production. 87th Spring Meeting of the German Physical Society, Berlin, Germany (2024)
Feng, S.; Gong, Y.; Neugebauer, J.; Raabe, D.; Liotti, E.; Grant, P. S.: Multi-technique investigation of Fe-rich intermetallic compounds for more impurity-tolerant Al alloys. Annual Meeting of DPG and DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) 2024, Berlin, Germany (2024)
Raabe, D.: Basic Materials Science Aspects of Green Metal Production. Royal Society Conference on Sustainable Metals: Science and Systems, London, UK (2024)
Raabe, D.: The Interplay of Lattice Defects and Chemistry at Atomic Scale and Why it Matters for the Properties of Materials. Van Horn Distinguished Lecturer Series, Cleveland, OH, USA (2023)
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…
The worldwide developments of electric vehicles, as well as large-scale or grid-scale energy storage to compensate the intermittent nature of renewable energy generation has generated a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term…