Ismer, L.; Hickel, T.; Neugebauer, J.: First principles study of Hydrogen in Mn-rich austenitic steels. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Körmann, F.; Dick, A.; Grabowski, B.; Hickel, T.; Neugebauer, J.: Importance of magnetism for the thermal expansion of transition metals: An ab initio study. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: A first principle determination of phase transitions in magnetic shape memory alloys. Multiscale approach to alloys: Advances and challenges, Stockholm, Sweden (2007)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: Determination of symmetry reduced structures by a soft-phonon analysis in magnetic shape memory alloys. Theory meets industry. The impact of density-functional calculation on materials science, Vienna, Austria (2007)
Grabowski, B.; Hickel, T.; Neugebauer, J.: Accuracy and error bars of DFT calculated thermodynamic properties for elementary metals. 13th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods, Trieste, Italy (2007)
Hickel, T.; Grabowski, B.; Uijttewaal, M.; Neugebauer, J.: Determination of symmetry-reduced structures by a soft-phonon analysis in magnetic shape memory alloys. 13th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods, Trieste, Italy (2007)
Hickel, T.; Grabowski, B.; Neugebauer, J.; Neumann, B.; Neumann, K.-U.; Ziebeck, K. R. A.: Temperature dependent properties of the Heusler alloy Ni2+xMn1-xGa. International Workshop on Ab initio Description of Iron and Steel (ADIS2006), Status and future challenges, Ringberg Castle, Germany (2006)
Hickel, T.; Nolting, W.: A self-consistent projection-operator approach to the Kondo-lattice model. The International Conference on Strongly Correlated Electron Systems, Vienna, Austria (2005)
Hickel, T.; Grabowski, B.; Neumann, K.; Neumann, K.-U.; Ziebeck, K. R. A.; Neugebauer, J.: Temperature dependent properties of Ni-rich Ni2MnGa. Materials Research Society fall meeting, Boston, MA, USA (2005)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…