Sachs, C.; Fabritius, H.; Pitsch, F.; Raabe, D.: Nanoindentation as tool to investigate micro-mechanical properties in the hierarchical structure of biological materials. MRS Fall Meeting, Boston, MA, USA (2007)
Nikolov, S.; Sachs, C.; Counts, W. A.; Fabritius, H.; Raabe, D.: Modeling of the Mechanical Behavior of Bone at Submicron Scale through Mean-Field Homogenization. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2007), Nürnberg, Germany (2007)
Sachs, C.; Fabritius, H.; Nikolov, S.; Raabe, D.: Influence of structural principles on the mechanics and efficiency of different biological materials using lobster cuticle as a model material. DPG Spring Meeting, Regensburg, Germany (2007)
Nikolov, S.; Sachs, C.; Fabritius, H.; Raabe, D.: Microstructure and micromechanics of hard biological tissues: From lobster cuticle to human bone. Seminar talk at Université Catholique de Louvain, Dept. of Applied Sciences, Louvain, Belgium (2007)
Fabritius, H.; Sachs, C.; Raabe, D.: Influence of structural principles on the mechanics and efficiency of different biological materials using lobster cuticle as a model material. Second International Conference on Mechanics of Biomaterials & Tissues (ICMBT 2007), Lihue, HI, USA (2007)
Sachs, C.; Fabritius, H.; Raabe, D.: Mechanical Properties of the Lobster Cuticle Investigated by Bending Tests and Digital Image Correlation. MRS Fall Conference, Boston, MA, USA (2006)
Sachs, C.; Fabritius, H.; Romano, P.; Raabe, D.: Viscoelastic Behavior of Lobster Cuticle as a Function of Mineralization Grade. MRS Fall Meeting, Boston, MA, USA (2005)
Fabritius, H.; Romano, P.; Sachs, C.; Al-Sawalmih, A.; Raabe, D.: Arthropod cuticle as an example for bio-composite materials with a strong hierarchical order from the nano- to the macro-level of organization. MRS Fall Meeting, Boston, MA, USA (2005)
Sachs, C.: Elastic-plastic behavior of the lobster cuticle. Organized by: GOM – Gesellschaft für Optische Messtechnik GmbH, Braunschweig, Germany (2005)
Raabe, D.; Romano, P.; Al-Sawalmih, A.; Sachs, C.; Servos, G.; Hartwig, H. G.: Microstructure and Mesostructure of the exoskeleton of the lobster homarus americanus. MRS Spring Meeting, San Francisco, CA, USA (2005)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…