Valtiner, M.; Borodin, S.; Grundmeier, G.: Stabilisation and acidic dissolution mechanism of single crystalline ZnO(0001) surfaces in electrolytes studied by in-situ AFM imaging and ex-situ LEED. Langmuir 24 (10), pp. 5350 - 5358 (2008)
Wapner, K.; Stratmann, M.; Grundmeier, G.: Structure and stability of adhesion promoting aminopropyl phosphonate layers at polymer/aluminium oxide interface. International Journal of Adhesion and Adhesives 28 (1-2), pp. 59 - 70 (2008)
Wielant, J.; Posner, R.; Grundmeier, G.; Terryn, H.: Interface dipoles observed after adsorption of model compounds on iron oxide films: Effect of organic functionality and oxide surface chemistry. Journal of Physical Chemistry C 112, pp. 12951 - 12957 (2008)
Giza, G.; Fink, N.; Grundmeier, G.: Electrochemical studies of the inhibition of the cathodic delamination of organically coated galvanised steel by thin conversion films. Electrochimica Acta 53 (3), pp. 1290 - 1299 (2007)
Itani, H.; Keil, P.; Haake, U.; Lützenkirchen-Hecht, D.; Grundmeier, G.: Formation of Ag nanoparticles in LbL deposited polyelectrolyte films investigated by means of XAS and UV-Vis spectroscopy. HASYLAB Annual Report, p. 581 - 581 (2007)
Valtiner, M.; Borodin, S.; Grundmeier, G.: Preparation and characterisation of hydroxide stabilised ZnO(0001)-Zn-OH surfaces. Physical Chemistry Chemical Physics 9 (19), pp. 2406 - 2412 (2007)
Vlasak, R.; Klueppel, I.; Grundmeier, G.: Combined EIS and FTIR-ATR study of water uptake and diffusion in polymer films on semiconducting electrodes. Electrochim. Acta 52 (28), pp. 8075 - 8080 (2007)
Yliniemi, K.; Ebbinghaus, P.; Keil, P.; Kontturi, K.; Grundmeier, G.: Chemical composition and barrier properties of Ag nanoparticle-containing sol-gel films in oxidizing and reducing low-temperature plasmas. Surface & Coatings Technology 201 (18), pp. 7865 - 7872 (2007)
Wapner, K.; Stratmann, M.; Grundmeier, G.: In-situ Infrared Spectroscopic and Scanning Kelvin Probe Measurements of Water and Ion Transport Kinetics at Polymer/Metal Interfaces. Electrochimica Acta 51 (16), pp. 3303 - 3315 (2006)
Wilson, B. P.; Fink, N.; Grundmeier, G.: Formation of ultra-thin amorphous conversion films on zinc alloy coatings. Part 2: Nucleation, growth and properties of inorganic-organic ultra-thin hybrid films. Electrochimica Acta 51 (15), pp. 3066 - 3075 (2006)
Fink, N.; Wilson, B. P.; Grundmeier, G.: Formation of ultra-thin amorphous conversion films on zinc alloy coatings. Part 1: Composition and reactivity of native oxides on ZnAl(0.05%)-coatings. Electrochimica Acta 51 (14), pp. 2956 - 2963 (2006)
Grundmeier, G.; Rossenbeck, B.; Roschmann, K. J.; Ebbinghaus, P.; Stratmann, M.: Corrosion Protection of Zn-Phosphate Containing Water Borne Dispersion Coatings on Steel. Part 2: Corrosive de-adhesion of model films on iron substrates. Corrosion Science 48 (11), pp. 3716 - 3730 (2006)
Rossenbeck, B.; Ebbinghaus, P.; Stratmann, M.; Grundmeier, G.: Corrosion protection of Zn-phosphate containing water borne dispersion coatings on steel. Part 1: Design and Analysis of Model Water Based Latex Films on Iron Substrates. Corrosion Science 48, pp. 3703 - 3715 (2006)
Sun, G.; Grundmeier, G.: Surface-enhanced Raman spectroscopy of the growth of ultra-thin organosilicon plasma polymers on nanoporous Ag/SiO2-bilayer films. Thin Solid Films 515 (4), pp. 1266 - 1274 (2006)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…