Herbig, M.; Raabe, D.; Li, Y.; Choi, P.-P.; Zaefferer, S.; Goto, S.: Joint crystallographic and chemical characterization at the nanometer scale by correlative TEM and atom probe tomography. Workshop: White-etching layers in ball and roller bearings, Informatik-Zentrum Hörn, Aachen, Germany (2014)
Zaefferer, S.: Texture and microstructures of thin film solar cells. Autumn School on Microstructural Characterization and Modelling of Thin-Film Solar Cells, Potsdam, Germany (2014)
Haghighat, S. M. H.; Li, Z.; Zaefferer, S.; Reed, R. C.; Raabe, D.: Characterization and modeling of the propagation of creep dislocations from the interdendritic boundaries in single crystal Ni base superalloys. International Workshop on Modelling and Simulation of Superalloys, Bochum, Germany (2014)
Zaefferer, S.; Mandal, S.; Bozzolo, N.: Correlative Measurement of the 5-parameter Grain Boundary Character and its Physical and Chemical Properties. MSE 2014, Darmstadt, Germany (2014)
Schemmann, L.; Romano Triguero, P.; Zaefferer, S.: Eine Untersuchung zur ferritisch-bainitischen Umwandlung in einem Dualphasenstahl unter Verwendung von EBSD-basierten Misorientierungsmessungen. Arbeitskreistreffen: Mikrostrukturcharakterisierung im REM, Düsseldorf, Germany (2014)
Zaefferer, S.: Quantitative analysis of crystal defects by means of EBSD and related methods. Arbeitskreistreffen: Mikrostrukturcharakterisierung im REM, Düsseldorf, Germany (2014)
Zaefferer, S.: Application of EBSD and ECCI for the Investigation of Microstructures of Engineering Materials. MSA EBSD 2014, Pittsburgh, PA, USA (2014)
Zaefferer, S.: Application of diffraction techniques in the scanning electron microscope for the investigation of microstructures of engineering materials. Deutsche Versuchsanstalt für Luft und Raumfahrt (DLR), Köln, Germany (2014)
Herbig, M.; Raabe, D.; Li, Y.; Choi, P.; Zaefferer, S.; Goto, S.: High Throughput Quantification of Grain Boundary Segregation by Correlative TEM and APT. TMS 2014, Solid-State Interfaces III Symposium, San Diego, CA, USA (2014)
Herbig, M.; Raabe, D.; Li, Y.; Choi, P.-P.; Zaefferer, S.; Goto, S.: High Throughput Quantification of Grain Boundary Segregation by Correlative Transmission Electron Microscopy and Atom Probe Tomography. International Conference on Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
Konijnenberg, P. J.; Stechmann, G.; Zaefferer, S.; Raabe, D.: Advances in Analysis of 3D Orientation Data Sets Obtained by FIB-EBSD Tomography. 2nd International Congress on 3D Materials Science 2014, Annecy, France (2014)
Ram, F.; Khorashadizadeh, A.; Zaefferer, S.: Kikuchi Band Sharpness: A Measure for the Density of the Crystal Lattice Defects. MSE 2014, Darmstadt, Germany (2014)
Ram, F.; Zaefferer, S.: Accurate Kikuchi band localization and its application for diffraction geometry determination. HR-EBSD workshop, Imperial College, London, UK (2014)
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…