Raabe, D.: News from the Iron Age – 3D EBSD and fresh Lobster. Anorganisch-Chemisches Kolloquium der Fakultät für Chemie der TU Dresden und des Max-Planck-Instituts für Chemische Physik fester Stoffe, Dresden, Germany (2005)
Raabe, D.: News from the Iron Age – 3D EBSD and fresh Lobster. Anorganisch-Chemisches Kolloquium der Fakultät für Chemie, TU Dresden und Max-Planck-Instituts für Chemische Physik fester Stoffe, Dresden, Germany (2005)
Raabe, D.; Al-Sawalmih, A.; Brokmeier, H. G.; Yi, S. B.: Texture and Smart Anisotropy of the Exoskeleton Tissue of Lobster. MRS Spring Meeting 2005, San Francisco, CA, USA (2005)
Konrad, J.; Raabe, D.; Zaefferer, S.: Investigation of orientation gradients around particles and their influence on particle stimulated nucleation in a hot rolled Fe3Al based alloy by applying 3D EBSD. DPG Frühjahrstagung, Berlin, Germany (2005)
Bastos, A.; Zaefferer, S.; Raabe, D.: Characterization of nanostructured electrodeposited NiCo Samples by use of Electron Backscatter Diffraction (EBSD). MRS Spring Meeting, San Francisco, CA, USA (2005)
Raabe, D.: Kristallmechanik in Metallen und Polymeren. Vom Werkstoffverständnis zum Wettbewerbsvorteil, Fraunhofer Institut für Werkstoffmechanik, Freiburg (2005)
Raabe, D.: Simulationen und Experimente zur Kristallmechanik. Instituts-Kolloquium am Institut für Festkörper- und Werkstoffforschung (IFW), Dresden, Germany (2005)
Roters, F.; Jeon-Haurand, H. S.; Raabe, D.: A texture evolution study using the Texture Component Crystal Plasticity FEM. Plasticity 2005, Kauai, USA (2005)
Raabe, D.: The role of texture and anisotropy in nano- and microscale materials mechanics. Keynote lecture at the Plasticity Conference 2004/2005, Hawai, USA (2005)
Raabe, D.: Using the Lattice Boltzmann Method for Multiscale Modeling in Materials Science and Engineering. Lecture at the Plasticity Conference 2004/2005, Hawai, USA (2005)
Raabe, D.; Romano, P.; Al-Sawalmih, A.; Sachs, C.; Servos, G.; Hartwig, H. G.: Microstructure and Mesostructure of the exoskeleton of the lobster homarus americanus. MRS Spring Meeting, San Francisco, CA, USA (2005)
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…
The worldwide developments of electric vehicles, as well as large-scale or grid-scale energy storage to compensate the intermittent nature of renewable energy generation has generated a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term…
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The group aims at unraveling the inner workings of ion batteries, with a focus on probing the microstructural and interfacial character of electrodes and electrolytes that control ionic transport and insertion into the electrode.