Krein, R.; Schneider, A.; Sauthoff, G.; Frommeyer, G.: High-temperature properties of boride-strengthened Fe3Al-based alloys. 13th International Student's Day of Metallurgy, Leoben, Austria (2006)
Schneider, A.; Inden, G.: Simulation of the kinetics of precipitation reactions in ferritic steels. TMS Annual meeting 2005, Symposium 'Computional thermodynamics and phase transformations', San Francisco, CA, USA (2006)
Palm, M.; Schneider, A.; Stein, F.; Sauthoff, G.: Strengthening of Fe–Al-Based Alloys for High-Temperature Applications. 3rd Disc.Meeting on the Development of Innovative Iron Aluminium Alloys, Mettmann-Düsseldorf, Germany (2006)
Hassel, A. W.; Bello Rodriguez, B.; Milenkovic, S.; Schneider, A.: Directionally solidified eutectics as a route for the formation of self organised nanostructures. 56rd Meeting of the International Society of Electrochemistry, Busan, South Korea (2005)
Palm, M.; Schneider, A.; Stein, F.; Sauthoff, G.: Iron-Aluminium-Base Alloys for Structural Applications at High Temperatures: Needs and Prospects. EUROMAT 2005, Prague, Czech Republic (2005)
Bello Rodriguez, B.; Milenkovic, S.; Hassel, A. W.; Schneider, A.: Formation of self-organised nanostructures from directionally solidified eutectic alloys. 12th International Symposium on Metastable and nano Materials (ISMANAM), Paris, France (2005)
Bello Rodriguez, B.; Hassel, A. W.; Schneider, A.: Deposition of Noble Metals on Nanopores for the Formation of Nanodisc Electrodes. 207th Meeting of The Electrochemical Society, Québec City, Canada (2005)
Hassel, A. W.; Milenkovic, S.; Schneider, A.: Preparation of One-Dimensionally Structured Electrode Materials by Directional Solidification. 207th Meeting of The Electrochemical Society, Québec City, Canada (2005)
Eleno, L. T. F.; Balun, J.; Inden, G.; Houserova, J.; Schneider, A.: Experimental study and thermodynamic modelling of the Fe-Ta equilibrium phase diagram. TOFA, Discussion Meeting on Thermodynamics of Alloys, Wien, Austria (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This study investigates the mechanical properties of liquid-encapsulated metallic microstructures created using a localized electrodeposition method. By encapsulating liquid within the complex metal microstructures, we explore how the liquid influences compressive and vibrational characteristics, particularly under varying temperatures and strain…
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…